Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 076104    DOI: 10.1088/1674-1056/22/7/076104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Towards understanding carbon trapping mechanism in copper by investigating the carbon-vacancy interaction

Zhou Hong-Bo (周洪波), Jin Shuo (金硕)
Department of Physics, Beihang University, Beijing 100191, China
Abstract  We propose a vacancy trapping mechanism for carbon-vacancy (C-V) complex formation in copper (Cu) according to the first-principles calculations of the energetics and kinetics of C-V interaction. Vacancy reduces charge density in its vicinity to induce C nucleation. A monovacancy is capable of trapping as many as four C atoms to form CnV (n=1, 2, 3, 4) complexes. Single C atom prefers to interact with neighboring Cu at vacancy with a trapping energy of-0.21 eV. With multiple C atoms added, they are preferred to bind with each other to form covalent-like bonds despite of the metallic Cu environment. For the CnV complexes, C2V is the major one due to its lowest average trapping energy (1.31 eV). Kinetically, the formation of the CnV complexes can be ascribed to the vacancy mechanism due to the lower activation energy barrier and the larger diffusion coefficient of vacancy than those of the interstitial C.
Keywords:  carbon      vacancy      copper      first-principles calculation  
Received:  19 January 2013      Revised:  20 February 2013      Accepted manuscript online: 
PACS:  61.82.Bg (Metals and alloys)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  66.30.J- (Diffusion of impurities ?)  
Fund: Project supported by the National Magnetic Confinement Fusion Program, China (Grant No. 2009GB106003).
Corresponding Authors:  Zhou Hong-Bo     E-mail:  hbzhou@buaa.edu.cn

Cite this article: 

Zhou Hong-Bo (周洪波), Jin Shuo (金硕) Towards understanding carbon trapping mechanism in copper by investigating the carbon-vacancy interaction 2013 Chin. Phys. B 22 076104

[1] Causey R, Wilson K, Venhaus T and Wampler W R 1999 J. Nucl. Mater. 266 467
[2] Davis J W and Kalinin G M 1998 J. Nucl. Mater. 258 323
[3] Xu M C, Qian H J, Liu F Q, Krash I, Lai W Y and Wu S C 2000 Chin. Phys. Lett. 17 49
[4] Andreani R and Gasparotto M 2002 Fusion Eng. Des. 61 27
[5] Zhang Y Z, Feng S W, Guo C S, Zhang G C, Zhuang S X, Su R, Bai Y X and Lu C Z 2008 Chin. Phys. Lett. 25 4083
[6] Liu Y L, Gui L J and Shuo J 2012 Chin. Phys. B 21 096102
[7] Hautojarvi P, Johansson J, Vehanen A, Ylikauppila J and Moser P 1980 Phys. Rev. Lett. 44 1326
[8] Follstaedt D M, Knapp J A, Pope L E, Yost F G and Picraux S T 1984 Appl. Phys. Lett. 45 529
[9] Becquart C S, Raulot J M, Bencteux G, Domain C, Perez M, Garruchet S and Nguyen H 2007 Comp. Mater. Sci. 40 119
[10] Dorfman S and Fuks D 1995 Sensor. Actuat. A 51 13
[11] Fuks D and Dorfman S 1997 Phys. Rev. B 55 3461
[12] Fuks D and Dorfman S 1998 J. Mater. Sci. Lett. 17 837
[13] Berner A, Fuks D, Ellis D E, Mundim K and Dorfman S 1999 Appl. Surf. Sci. 144 677
[14] Ellis D E, Mundim K C, Fuks D, Dorfman S and Berner A 1999 Phil. Mag. B 79 1615
[15] Fuks D, Mundim K C, Malbouisson L A C, Berner A, Dorfman S and Ellis D E 2001 J. Mol. Struct. 539 199
[16] Minov B, Lambrecht M, Terentyev D, Domain C and Konstantinović M J 2012 Phys. Rev. B 85 024202
[17] Fukai Y and Okuma N 1994 Phys. Rev. Lett. 73 1640
[18] Lu G and Kaxiras E 2002 Phys. Rev. Lett. 89 105501
[19] Vehanen A, Hautojärvi P, Johansson J, Yli-Kauppila J and Moser P 1982 Phys. Rev. B 25 762
[20] Domain C, Becquart C S and Foct J 2004 Phys. Rev. B 69 144112
[21] Först C J, Slycke J, van Vliet K J and Yip S 2006 Phys. Rev. Lett. 96 175501
[22] Tapasa K, Barashev A V, Bacon D J and Osetsky Y N 2007 Acta Mater. 55 1
[23] Fu C C, Meslin E, Barbu A, Willaime F and Oison V 2008 Solid State Phenom. 139 157
[24] Zhou H B and Liu Y L J. Nucl. Mater. (to be published)
[25] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R and Fiolhais C 1992 Phys. Rev. B 46 6671
[28] Blochl P E 1994 Phys. Rev. B 50 17953
[29] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[30] Simon N J, Drexler E S and Reed R P 1992 Properties of Copper and Copper Alloys at Cryogenic Temperatures (New York: International Copper Association, Ltd.; Gaithersburg: the National Institute of Standard and Technology)
[31] Puska M J, Nieminen R M and Manninen M 1981 Phys. Rev. B 24 3037
[32] Jiang D E and Carter E A 2003 Phys. Rev. B 67 214103
[33] Kittel C 1996 Introduction to Solid State Physics (7th edn.) (New York: Wiley)
[34] Kong X S, You Y W, Song C, Fang Q F, Chen J L, Luo G N and Liu C S 2012 J. Nucl. Mater. 430 270
[35] March J 1985 Advanced Organic Chemistry (New York: Wiley)
[36] Fu C C, Willaime F and Ordejon P 2004 Phys. Rev. Lett. 92 175503
[37] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl. Fusion 50 025016
[38] Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl. Fusion 50 115010
[39] Nordlund K and Averback R S 1998 Phys. Rev. Lett. 80 4201
[40] Andersson D A and Simak S I 2004 Phys. Rev. B 70 115108
[41] Li X C, Shu X, Liu Y N, Gao F and Lu G H 2011 J. Nucl. Mater. 408 12
[42] Wert C and Zener C 1949 Phys. Rev. 76 1169
[43] Maier K, Bassini C and Schüle W 1973 Phys. Lett. 44 539
[44] Lam N Q, Rothman S J and Nowicki L J 1974 Phys. Status Solidi A 23 K35
[45] Maier K 1987 Phys. Stat. Sol. (b) 144 329
[46] Alkhamees A, Liu Y L, Zhou H B, Zhang Y and Lu G H 2009 J. Nucl. Mater. 393 508
[47] Duan C, Liu Y L, Zhou H B, Zhang Y, Jin S, Lu G H and Luo G N 2010 J. Nucl. Mater. 404 109
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[5] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[6] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[9] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[10] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[11] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[12] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[13] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[14] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[15] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
No Suggested Reading articles found!