CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Towards understanding carbon trapping mechanism in copper by investigating the carbon-vacancy interaction |
Zhou Hong-Bo (周洪波), Jin Shuo (金硕) |
Department of Physics, Beihang University, Beijing 100191, China |
|
|
Abstract We propose a vacancy trapping mechanism for carbon-vacancy (C-V) complex formation in copper (Cu) according to the first-principles calculations of the energetics and kinetics of C-V interaction. Vacancy reduces charge density in its vicinity to induce C nucleation. A monovacancy is capable of trapping as many as four C atoms to form CnV (n=1, 2, 3, 4) complexes. Single C atom prefers to interact with neighboring Cu at vacancy with a trapping energy of-0.21 eV. With multiple C atoms added, they are preferred to bind with each other to form covalent-like bonds despite of the metallic Cu environment. For the CnV complexes, C2V is the major one due to its lowest average trapping energy (1.31 eV). Kinetically, the formation of the CnV complexes can be ascribed to the vacancy mechanism due to the lower activation energy barrier and the larger diffusion coefficient of vacancy than those of the interstitial C.
|
Received: 19 January 2013
Revised: 20 February 2013
Accepted manuscript online:
|
PACS:
|
61.82.Bg
|
(Metals and alloys)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
66.30.J-
|
(Diffusion of impurities ?)
|
|
Fund: Project supported by the National Magnetic Confinement Fusion Program, China (Grant No. 2009GB106003). |
Corresponding Authors:
Zhou Hong-Bo
E-mail: hbzhou@buaa.edu.cn
|
Cite this article:
Zhou Hong-Bo (周洪波), Jin Shuo (金硕) Towards understanding carbon trapping mechanism in copper by investigating the carbon-vacancy interaction 2013 Chin. Phys. B 22 076104
|
[1] |
Causey R, Wilson K, Venhaus T and Wampler W R 1999 J. Nucl. Mater. 266 467
|
[2] |
Davis J W and Kalinin G M 1998 J. Nucl. Mater. 258 323
|
[3] |
Xu M C, Qian H J, Liu F Q, Krash I, Lai W Y and Wu S C 2000 Chin. Phys. Lett. 17 49
|
[4] |
Andreani R and Gasparotto M 2002 Fusion Eng. Des. 61 27
|
[5] |
Zhang Y Z, Feng S W, Guo C S, Zhang G C, Zhuang S X, Su R, Bai Y X and Lu C Z 2008 Chin. Phys. Lett. 25 4083
|
[6] |
Liu Y L, Gui L J and Shuo J 2012 Chin. Phys. B 21 096102
|
[7] |
Hautojarvi P, Johansson J, Vehanen A, Ylikauppila J and Moser P 1980 Phys. Rev. Lett. 44 1326
|
[8] |
Follstaedt D M, Knapp J A, Pope L E, Yost F G and Picraux S T 1984 Appl. Phys. Lett. 45 529
|
[9] |
Becquart C S, Raulot J M, Bencteux G, Domain C, Perez M, Garruchet S and Nguyen H 2007 Comp. Mater. Sci. 40 119
|
[10] |
Dorfman S and Fuks D 1995 Sensor. Actuat. A 51 13
|
[11] |
Fuks D and Dorfman S 1997 Phys. Rev. B 55 3461
|
[12] |
Fuks D and Dorfman S 1998 J. Mater. Sci. Lett. 17 837
|
[13] |
Berner A, Fuks D, Ellis D E, Mundim K and Dorfman S 1999 Appl. Surf. Sci. 144 677
|
[14] |
Ellis D E, Mundim K C, Fuks D, Dorfman S and Berner A 1999 Phil. Mag. B 79 1615
|
[15] |
Fuks D, Mundim K C, Malbouisson L A C, Berner A, Dorfman S and Ellis D E 2001 J. Mol. Struct. 539 199
|
[16] |
Minov B, Lambrecht M, Terentyev D, Domain C and Konstantinović M J 2012 Phys. Rev. B 85 024202
|
[17] |
Fukai Y and Okuma N 1994 Phys. Rev. Lett. 73 1640
|
[18] |
Lu G and Kaxiras E 2002 Phys. Rev. Lett. 89 105501
|
[19] |
Vehanen A, Hautojärvi P, Johansson J, Yli-Kauppila J and Moser P 1982 Phys. Rev. B 25 762
|
[20] |
Domain C, Becquart C S and Foct J 2004 Phys. Rev. B 69 144112
|
[21] |
Först C J, Slycke J, van Vliet K J and Yip S 2006 Phys. Rev. Lett. 96 175501
|
[22] |
Tapasa K, Barashev A V, Bacon D J and Osetsky Y N 2007 Acta Mater. 55 1
|
[23] |
Fu C C, Meslin E, Barbu A, Willaime F and Oison V 2008 Solid State Phenom. 139 157
|
[24] |
Zhou H B and Liu Y L J. Nucl. Mater. (to be published)
|
[25] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[26] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[27] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[28] |
Blochl P E 1994 Phys. Rev. B 50 17953
|
[29] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[30] |
Simon N J, Drexler E S and Reed R P 1992 Properties of Copper and Copper Alloys at Cryogenic Temperatures (New York: International Copper Association, Ltd.; Gaithersburg: the National Institute of Standard and Technology)
|
[31] |
Puska M J, Nieminen R M and Manninen M 1981 Phys. Rev. B 24 3037
|
[32] |
Jiang D E and Carter E A 2003 Phys. Rev. B 67 214103
|
[33] |
Kittel C 1996 Introduction to Solid State Physics (7th edn.) (New York: Wiley)
|
[34] |
Kong X S, You Y W, Song C, Fang Q F, Chen J L, Luo G N and Liu C S 2012 J. Nucl. Mater. 430 270
|
[35] |
March J 1985 Advanced Organic Chemistry (New York: Wiley)
|
[36] |
Fu C C, Willaime F and Ordejon P 2004 Phys. Rev. Lett. 92 175503
|
[37] |
Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl. Fusion 50 025016
|
[38] |
Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N and Lu G H 2010 Nucl. Fusion 50 115010
|
[39] |
Nordlund K and Averback R S 1998 Phys. Rev. Lett. 80 4201
|
[40] |
Andersson D A and Simak S I 2004 Phys. Rev. B 70 115108
|
[41] |
Li X C, Shu X, Liu Y N, Gao F and Lu G H 2011 J. Nucl. Mater. 408 12
|
[42] |
Wert C and Zener C 1949 Phys. Rev. 76 1169
|
[43] |
Maier K, Bassini C and Schüle W 1973 Phys. Lett. 44 539
|
[44] |
Lam N Q, Rothman S J and Nowicki L J 1974 Phys. Status Solidi A 23 K35
|
[45] |
Maier K 1987 Phys. Stat. Sol. (b) 144 329
|
[46] |
Alkhamees A, Liu Y L, Zhou H B, Zhang Y and Lu G H 2009 J. Nucl. Mater. 393 508
|
[47] |
Duan C, Liu Y L, Zhou H B, Zhang Y, Jin S, Lu G H and Luo G N 2010 J. Nucl. Mater. 404 109
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|