Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 076201    DOI: 10.1088/1674-1056/22/7/076201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical demonstration of hybrid focusing points ofsonic crystal flat lenses and possible applications

Serkan Alagoza, Baris Baykant Alagozb
a Department of Physics, Inonu University, Center Campus, Malatya;
b Department of Electric-Electronics, Inonu University, Center Campus, Malatya
Abstract  We demonstrate the hybrid focusing points of sonic crystals for a multi-source array applied to flat sonic crystal lenses. The contributions of different point source couples form hybrid focusing points. Ray-trace analyses are conducted for acoustic flat lenses with multi-source configurations. The finite-difference time-domain (FDTD) simulation of flat lenses with multi-source configurations demonstrates the establishment of pure and hybrid focusing points in a pyramidal constellation. The number of focusing points in the pyramidal constellation depends on the number of point sources. We propose an acoustic device for fine-tuning the location of a far-field hybrid focusing point and discuss its benefits for acoustic energy focusing application.
Keywords:  negative refraction      sonic crystal metamaterials      wave focusing      acoustic flat lens  
Received:  27 December 2012      Revised:  12 February 2013      Accepted manuscript online: 
PACS:  62.65.+k (Acoustical properties of solids)  
  43.20.El (Reflection, refraction, diffraction of acoustic waves)  
  43.35.Cg (Ultrasonic velocity, dispersion, scattering, diffraction, and Attenuation in solids; elastic constants)  
Corresponding Authors:  Serkan Alagoz     E-mail:  serkan.alagoz@inonu.edu.tr

Cite this article: 

Serkan Alagoz, Baris Baykant Alagoz Theoretical demonstration of hybrid focusing points ofsonic crystal flat lenses and possible applications 2013 Chin. Phys. B 22 076201

[1] Zhuang D X, Chen X Y, Li J J, Qiang Z X, Jiang J Z, Chen Z Y, Qiu Y S and Li H 2012 Chin. Phys. Lett. 29 124201
[2] Wang C H, Kuang D F, Chang S J and Lin L 2012 Chin. Phys. Lett. 29 124205
[3] Zhang C X and Xu X S 2012 Chin. Phys. B 21 044213
[4] Tang H X, Zuo Y H, Yu J Z and Wang Q M 2008 Chin. Phys. B 17 228
[5] Zhang H, Guo P, Chang S J and Yuan J H 2008 Chin. Phys. Lett. 25 3898
[6] Shen X X, Yang X L, Cai L Z, Wang Y R, Dong G Y, Meng X F and Xu X F 2008 Chin. Phys. Lett. 25 3972
[7] Zhang X, Chen S W, Liao Q H, Yu T B, Liu N H and Huang Y Z 2011 Chin. Phys. Lett. 28 084201
[8] Wu H, Jiang L Y, Jia W and Li X Y 2012 Chin. Phys. Lett. 29 034203
[9] Hou S L, Xue L M, Li S P, Liu Y J and Xu Y Z 2012 Acta Phys. Sin. 61 134206 (in Chinese)
[10] Sun W Q, Liu Y M, Wang D L, Han L H, Guo X and Yu Z Y 2013 Chin. Phys. B 22 014201
[11] Feng S, Ren C, Wang W Z and Wang Y Q 2012 Chin. Phys. B 21 114212
[12] Zhu Q Y, Fu Y Q, Hu D Q and Zhang Z M 2012 Chin. Phys. B 21 064220
[13] Jiang H, Zhang M L, Wang Y R, Hu Y P, Lan D and Wei B C 2009 Chin. Phys. Lett. 26 106202
[14] Ni Q and Cheng J C 2005 Chin. Phys. Lett. 22 2305
[15] Gao X W, Chen S B, Chen J B, Zheng Q H and Yang H 2012 Chin. Phys. B 21 064301
[16] Kong X Y, Yue L L, Chen Y and Liu Y K 2012 Chin. Phys. B 21 096101
[17] Zhong L H, Wu F G and Zhong H L 2010 Chin. Phys. B 19 020301
[18] Zhu X F, Liu S C, Xu T, Wang T H and Cheng J C 2010 Chin. Phys. B 19 044301
[19] Cai C, Zhu X F, Chen Q, Yuan Y, Liang B and Cheng J C 2011 Chin. Phys. B 20 116301
[20] Li Y, Hou Z L, Fu X J and Badreddine M A 2010 Chin. Phys. Lett. 27 074303
[21] Zhang S, Hua J and Cheng J C 2003 Chin. Phys. Lett. 20 1303
[22] Jiang H, Wang Y R, Zhang M L, Hu Y P, Lan D, Wu Q L and Lu H T 2010 Chin. Phys. B 19 026202
[23] Qin B, Chen J J and Cheng J C 2005 Chin. Phys. 14 2522
[24] Qiu C, Zhang X and Liu Z 2005 Phys. Rev. B 71 054302
[25] Alagoz S and Alagoz B B 2009 Appl. Acoust. 70 1400
[26] Alagoz S 2012 Chin. J. Phys. 50 703
[27] Yang S, Page J H, Liu Z, Cowan M L, Chan C T and Sheng P 2004 Phys. Rev. Lett. 93 024301
[28] Alagoz S 2012 Chin. Phys. B 21 126202
[29] Feng Z F, Wang X G, Li Z Y and Zhang D Z 2008 Chin. Phys. B 17 1101
[30] He Z, Li X, Mei J and Liu Z 2009 J. Appl. Phys. 106 026105
[31] Sukhovich A, Merheb B, Muralidharan K, Vasseur J O, Pennec Y, Deymier P A and Page J H 2009 Phys. Rev. Lett. 102 154301
[32] Zhao H G, Wen J H, Liu Y Z, Yu D L, Wang G and Wen X S 2008 Chin. Phys. B 17 1305
[33] Cai C, Zhu X F, Chen Q, Yuan Y, Liang B and Cheng J C 2011 Chin. Phys. B 20 116301
[34] Sanchez-Morcillo V J, Staliunas K, Espinosa V, Pérez-Arjona I, Redondo J and Soliveres E 2009 Phys. Rev. B 80 134303
[35] Economou E N and Sigalas M M 1993 Phys. Rev. B 48 13434
[36] Miyashita T 2005 Meas. Sci. Technol. 16 47
[37] Wang W C, Wu L Y, Chen L W and Liu C M 2010 Smart Mater. Struct. 19 045016
[38] Feng Z F 2010 Chin. Phys. B 19 067201
[39] Wu L Y, Yang W P and Chen L W 2008 Phys. Lett. A 372 2701
[40] Deng K, Ding Y, He Z, Zhao H, Shi J and Liu Z 2009 J. Phys. D: Appl. Phys. 42 185505
[41] Wang W C, Wu L Y, Chen L W and Liu C M 2010 Smart Mater. Struct. 19 045016
[1] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[2] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
[3] Retrieval of the effective constitutive parameters from metamaterial absorbers
Shaomei Shi(石邵美), Xiaojing Qiao(乔小晶), Shuo Liu(刘朔), and Weinan Liu(刘卫南). Chin. Phys. B, 2021, 30(11): 117803.
[4] Propagation of shaped beam through uniaxially anisotropic chiral slab
Ming-Jun Wang(王明军), Jia-Lin Zhang(张佳琳), Hua-Yong Zhang(张华永), and Zi-Han Wang(王梓涵)$. Chin. Phys. B, 2020, 29(11): 114211.
[5] Wider frequency domain for negative refraction index in a quantized composite right-left handed transmission line
Qi-Xuan Wu(吴奇宣), Shun-Cai Zhao(赵顺才). Chin. Phys. B, 2018, 27(6): 068102.
[6] Negative refractions by triangular lattice sonic crystals in partial band gaps
S. Alagoz, B. B. Alagoz, A. Sahin, S. Nur. Chin. Phys. B, 2015, 24(4): 046201.
[7] Wavefront modulation of water surface wave by a metasurface
Sun Hai-Tao (孙海涛), Cheng Ying (程营), Wang Jing-Shi (王敬时), Liu Xiao-Jun (刘晓峻). Chin. Phys. B, 2015, 24(10): 104302.
[8] Effects of wave propagation anisotropy on the wave focusing by negative refractive sonic crystal flat lenses
S. Alagoz. Chin. Phys. B, 2012, 21(12): 126202.
[9] Electromagnetic chirality-induced negative refraction with the same amplitude and anti-phase of the two chirality coefficients
Zhao Shun-Cai (赵顺才), Liu Zheng-Dong (刘正东), Zheng Jun (郑军), Li Gen (黎根). Chin. Phys. B, 2011, 20(6): 067802.
[10] Coherent control of negative refraction based on local-field enhancement and dynamically induced chirality
Ba Nuo (巴诺), Gao Jin-Wei (高金伟), Tian Xing-Xia (田杏霞), Wu Xi (吴熙), Wu Jin-Hui (吴金辉). Chin. Phys. B, 2010, 19(7): 074208.
[11] Negative refraction in ferromagnetic materials under external magnetic field: a theoretical analysis
Wei Jing-Song(魏劲松) and Xiao Mu-Fei(肖暮霏). Chin. Phys. B, 2010, 19(5): 057801.
[12] Aberration-free two-thin-lens systems based on negative-index materials
Lin Zhi-Li(林志立), Ding Jie-Chen(丁婕琛), and Zhang Pu(张朴). Chin. Phys. B, 2008, 17(3): 954-959.
[13] Controlling the focusing properties of a triangular-lattice metallic photonic-crystal slab
Feng Shuai(冯帅), Wang Yi-Quan (王义全), Li Zhi-Yuan(李志远), Cheng Bing-Ying(程丙英), and Zhang Dao-Zhong(张道中). Chin. Phys. B, 2007, 16(6): 1689-1693.
[14] Existing conditions of full bandgaps and absolute negative refraction in metallic-dielectric photonic crystal
Dong Jian-Wen(董建文), Hu Xin-Hua(胡新华), and Wang He-Zhou(汪河洲). Chin. Phys. B, 2007, 16(4): 1057-1061.
[15] Frequency bands of negative refraction in finite one-dimensional photonic crystals
Chen Yuan-Yuan(陈园园), Huang Zhao-Ming(黄肇明), Shi Jie-Long(施解龙), Li Chun-Fang(李春芳), and Wang Qi(王奇). Chin. Phys. B, 2007, 16(1): 173-178.
No Suggested Reading articles found!