Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 068802    DOI: 10.1088/1674-1056/22/6/068802
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The effects of InGaN layer thickness on the performance of InGaN/GaN p-i-n solar cells

Li Liang (李亮), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Liu Zong-Shun (刘宗顺), Chen Ping (陈平), Wu Liang-Liang (吴亮亮), Le Ling-Cong (乐伶聪), Wang Hui (王辉), Yang Hui (杨辉)
a State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract  InGaN/GaN p–i–n solar cells, each with an undoped In0.12Ga0.88N absorption layer, are grown on c-plane sapphire substrates by metal–organic chemical vapor deposition. The effects of the thickness and dislocation density of the absorption layer on the collection efficiency of InGaN-based solar cells are analyzed, and the experimental results demonstrate that the thickness of the InGaN layer and the dislocation density significantly affect the performance. An optimized InGaNbased solar cell with a peak external quantum efficiency of 57% at a wavelength of 371 nm is reported. The full width at half maximum of the rocking curve of the (0002) InGaN layer is 180 arcsec.
Keywords:  nitride materials      crystal growth      solar cell      X-ray diffraction  
Received:  20 August 2012      Revised:  30 October 2012      Accepted manuscript online: 
PACS:  88.40.hj (Efficiency and performance of solar cells)  
  81.05.Ea (III-V semiconductors)  
  78.40.Fy (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 60925017), the National Natural Science Foundation of China (Grant Nos. 10990100, 60836003, 60976045, 61223005, and 61176126), and the National Basic Research Program of China (Grant No. 2007CB936700).
Corresponding Authors:  Zhao De-Gang     E-mail:  dgzhao@red.semi.ac.cn

Cite this article: 

Li Liang (李亮), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Liu Zong-Shun (刘宗顺), Chen Ping (陈平), Wu Liang-Liang (吴亮亮), Le Ling-Cong (乐伶聪), Wang Hui (王辉), Yang Hui (杨辉) The effects of InGaN layer thickness on the performance of InGaN/GaN p-i-n solar cells 2013 Chin. Phys. B 22 068802

[1] Matioli E, Neufeld C, Iza M, Cruz S C, Al-heji A A, Chen X, Farrell R M, Keller S, Denbaars S, Mishra U, Nakamura S, Speck J and Weisbuch C 2011 Appl. Phys. Lett. 98 021102
[2] Dahal R, Pantha B, Li J, Lin J Y and Jiang H X 2009 Appl. Phys. Lett. 94 063505
[3] Jani O, Ferguson I, Honsberg C and Kurtz S 2007 Appl. Phys. Lett. 91 132117
[4] Zhu J H, Wang L J, Zhang S M, Wang H, Zhao D G, Zhu J J, Liu Z S, Jiang D S and Yang H 2011 Chin. Phys. B. 20 077804
[5] Xue J, Chen D, Liu B and Xie Z 2009 Chin. Phys. Lett. 26 098102
[6] Wu J, Walukiewicz W, Yu K M, Shan W and Ager J W 2003 J. Appl. Phys. 94 6477
[7] Lai K Y, Lin G J, Lai Y, Chen Y F and He J H 2010 Appl. Phys. Lett. 96 081103
[8] Kuwahara Y, Fujii T, Fujiyama Y, Sugiyama T, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I and Amano H 2010 Appl. Phys. Express 3 111001
[9] Sheu J K, Yang C C, Tu S, Chang K, Lee M, Lai W and Peng L 2009 IEEE Electron Dev. Lett. 30 225
[10] Niu X B, Gerald B S and Niu F 2011 Appl. Phys. Lett. 99 213102
[11] Neufeld C J, Toledo N G, Cruz S C, Iza M, Denbaars S P and Mishra U K 2008 J. Appl. Phys. 93 143502
[12] Sang L, Liao M, Ikeda N, Koide Y and Sumiya M 2011 Appl. Phys. Lett. 99 161109
[13] Srinivasan S, Geng L, Liu F, Ponce F A and Narukawa Y 2003 Appl. Phys. Lett. 83 5187
[14] Wuu D, Wu H, Chen S, Tsai T, Zheng X and Horng R 2009 J. Cryst. Growth 311 3063
[15] Feng S, Lai C, Chen C, Sun W and Tu L 2010 J. Appl. Phys. 108 093118
[16] Stulik P and Singh J 1998 J. Non-Crystal. Solids 226 299
[17] Wu J 2009 J. Appl. Phys. 106 011101
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[4] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[5] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[6] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[7] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[8] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[9] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[10] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[11] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[12] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[13] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[14] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[15] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
No Suggested Reading articles found!