Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 068801    DOI: 10.1088/1674-1056/22/6/068801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Non-isothermal kinetics of styrene-butadiene-styrene asphalt combustion

Wu Ke (吴珂)a, Zhu Kai (朱凯)a, Han Jun (韩君)a c, Wang Jin-Chang (王金昌)a, Huang Zhi-Yi (黄志义)a, Liang Pei (梁培)b
a Faculty of Engineering, Zhejiang University, Hangzhou 310027, China;
b College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China;
c Jiangsu Bao Li Asphalt Co. LTD, Wuxi 214422, China
Abstract  The combustion characteristics of styrene-butadiene-styrene (SBS) asphalt are studied by thermogravimetric analysis (TG/DTG) at four different heating rates. According to the saturates/aromatics/resins/asphaltenes (SARA) fractionation method, the combustion process of SBS asphalt can be divided by Gaussian peak fitting into three main stages: oil content release, resin pyrolysis, and asphaltene and char combustion. When the heating rate increases, the mass losses of the oil content and resin pyrolysis increase, and less asphaltenes are formed at a higher temperature. The activation energy values are calculated by the Coats-Redfern method to be in the range 61.6 kJ/mol-142.9 kJ/mol. The Popescu method is used for the kinetic analysis, and the result shows that the three stages of asphalt combustion can be explained by the sphere phase boundary reaction model, the second order chemical reaction model, nucleation, and its subsequent growth model, respectively.
Keywords:  SBS asphalt      combustion      non-isothermal kinetic      TG/DTG  
Received:  14 August 2012      Revised:  31 October 2012      Accepted manuscript online: 
PACS:  88.20.jj (Combustion)  
  88.05.Np (Environmental aspects)  
  88.05.De (Thermodynamic constraints on energy production)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61154002 and 51078331), the China Postdoctoral Science Foundation (Grant No. 20090451471), and the Zhejiang Provincial Natural Science Foundation, China (Grant No. Z1110222).
Corresponding Authors:  Huang Zhi-Yi     E-mail:  hzy@zju.edu.cn

Cite this article: 

Wu Ke (吴珂), Zhu Kai (朱凯), Han Jun (韩君), Wang Jin-Chang (王金昌), Huang Zhi-Yi (黄志义), Liang Pei (梁培) Non-isothermal kinetics of styrene-butadiene-styrene asphalt combustion 2013 Chin. Phys. B 22 068801

[1] Barral M, Garmendia P, Muñoz M E, Palmillas Z, Romera R and Santamaria A, Villanueva S 2012 Construction and Building Materials 30 650
[2] Tekalur S A, Shukla A, Sadd M and Lee K W 2009 Construction and Building Materials 23 1795
[3] Yu J Y, Cong P L and Wu S P 2009 Construction and Building Materials 23 2277
[4] Benbouzid M and Hafsi S 2008 Fuel 87 1585
[5] Lönermark A and Ingason H 2005 Fire Safety Journal 40 506
[6] Zhang Y M, Han R Q, Wu X S and Wang Z H 2011 Chin. Phys. Lett. 28 128202
[7] Zong F J, Ma H L, Liang W, Du W, Zhang X J, Xiao H D, Ma J, Ji F, Xue C S and Zhuang H Z 2005 Chin. Phys. Lett. 22 907
[8] Huang P, Cui C E and Wang S 2009 Chin. Phys. B 18 4524
[9] Wang L Y, Liu B, Song Z T, Liu W L, Feng S L, Huang D and Babu S V 2011 Chin. Phys. B 20 038102
[10] Gong J S and Fu W B 2003 Journal of Fuel Chemistry and Technology 31 181 (in Chinese)
[11] Gong J S, Fu W B and Zhong B J 2003 Fuel 82 49
[12] Murugan P, Mahinpey N, Mani T and Freitag N 2009 Fuel 88 708
[13] Murugan P, Thilakavathi M, Nader M and Asghari K 2011 Fuel 92 1056
[14] Xu T and Huang X M 2010 Fuel 89 2185
[15] Xu T and Huang X M 2010 Journal of Analytical and Applied Pyrolysis 87 217
[16] Aske N, Kallevik H and Sjöblom J 2001 Energy & Fuels 15 1304
[17] Yildirim Y 2007 Construction and Building Materials 21 66
[18] Guo A J, Zhang X J and Wang Z X 2008 Fuel Processing Technology 89 643
[19] Mukoyama T 1975 Nucl. Instrum. Method 125 289
[20] Kok M V and Karacan C O 2000 SPE Reservoir Evaluation & Engineering 3 380
[21] Gonçlves M L A, Teixeira M A G, Pereira R C L, Mercury R L P and Matos J R 2001 Journal of Thermal Analysis and Calorimetry 64 697
[22] Xu Q 1999 Acta Phys. Sin. 48 16 (in Chinese)
[23] Popescu C 1996 Thermochimica Acta 285 309
[24] Hu R Z and Shi Q Z Thermal Analysis Kinetics 1 (Beijing: Science Press) pp. 144-173 (in Chinese)
[25] Vlaev L, Nedelchev N, Gyurova K and Zagorcheva M 2008 Journal of Analytical and Applied Pyrolysis 81 253
[26] Coats A W and Redfern J P 1964 Nature 201 68
[1] Studies on aluminum powder combustion in detonation environment
Jian-Xin Nie(聂建新), Run-Zhe Kan(阚润哲), Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Xue-Yong Guo(郭学永), and Shi Yan(闫石). Chin. Phys. B, 2022, 31(4): 044703.
[2] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[3] Quantitative temperature imaging at elevated pressures and in a confined space with CH4/air laminar flames by filtered Rayleigh scattering
Bo Yan(闫博), Li Chen(陈力), Meng Li(李猛), Shuang Chen(陈爽), Cheng Gong(龚诚), Fu-Rong Yang(杨富荣), Yun-Gang Wu(吴运刚), Jiang-Ning Zhou(周江宁), Jin-He Mu(母金河). Chin. Phys. B, 2020, 29(2): 024701.
[4] Structural response of aluminum core-shell particles in detonation environment
Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Jian-Xin Nie(聂建新), Hong-Bo Pei(裴红波). Chin. Phys. B, 2019, 28(8): 088201.
[5] Ignition characteristics of pre-combustion plasma jet igniter
Si-Bo Wang(王思博), Jin-Lu Yu(于锦禄), Jing-Feng Ye(叶景峰), Guo-Hua Li(李国华), Zhao Chen(陈朝), Lu-Yun Jiang(蒋陆昀), Chen-Li Gu(古晨力). Chin. Phys. B, 2019, 28(11): 114702.
[6] Laser absorption spectroscopy for high temperature H2O time-history measurement at 2.55 μm during oxidation of hydrogen
Yu-Dan Gou(苟于单), De-Xiang Zhang(张德翔), Yi-Jun Wang(王易君), Chang-Hua Zhang(张昌华), Ping Li(李萍), Xiang-Yuan Li(李象远). Chin. Phys. B, 2018, 27(7): 074213.
[7] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[8] Exploring the methane combustion reaction: A theoretical contribution
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2018, 27(2): 023401.
[9] Effect of plasma on combustion characteristics of boron
Peng Zhang(张鹏), Wenli Zhong(钟文丽), Qian Li(李倩), Bo Yang(杨波), Zhongguang Li(李忠光), Xiao Luan(栾骁). Chin. Phys. B, 2017, 26(11): 110501.
[10] Effect of co-doped metal caions on the properties of Y2O3:Eu3+ phosphors synthesized by gel-combustion method
Hui Shi(石慧), Xi-Yan Zhang(张希艳), Wei-Li Dong(董玮利), Xiao-Yun Mi(米晓云), Neng-Li Wang(王能利), Yan Li(李艳), Hong-Wei Liu(刘宏伟). Chin. Phys. B, 2016, 25(4): 047802.
[11] Combustion of a single magnesium particle in water vapor
Huang Li-Ya (黄利亚), Xia Zhi-Xun (夏智勋), Zhang Wei-Hua (张为华), Huang Xu (黄序), Hu Jian-Xin (胡建新). Chin. Phys. B, 2015, 24(9): 094702.
[12] Experimental investigation of effects of airflows on plasma-assisted combustion actuator characteristics
Liu Xing-Jian (刘兴建), He Li-Ming (何立明), Yu Jin-Lu (于锦禄), Zhang Hua-Lei (张华磊). Chin. Phys. B, 2015, 24(4): 045101.
[13] Influence of limestone fillers on combustion characteristics of asphalt mortar for pavements
Wu Ke (吴珂), Zhu Kai (朱凯), Wu Hao (吴昊), Han Jun (韩君), Wang Jin-Chang (王金昌), Huang Zhi-Yi (黄志义), Liang Pei (梁培). Chin. Phys. B, 2014, 23(7): 074703.
[14] Flow characterization and dilution effects of N2 and CO2 on premixed CH4/air flames in a swirl-stabilized combustor
Han Yue (韩乐), Cai Guo-Biao (蔡国飙), Wang Hai-Xing (王海兴), Renou Bruno, Boukhalfa Abdelkrim. Chin. Phys. B, 2014, 23(3): 034704.
[15] Characterization and luminescence of Eu/Sm-coactivated CaYAl3O7 phosphor synthesized by using a combustion method
Yu Hong-Ling (余红玲), Yu Xue (余雪), Xu Xu-Hui (徐旭辉), Jiang Ting-Ming (姜庭明), Yang Peng-Hui (杨鹏辉), Jiao Qing (焦清), Zhou Da-Cheng (周大成), Qiu Jian-Bei (邱建备). Chin. Phys. B, 2013, 22(9): 098503.
No Suggested Reading articles found!