Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 068901    DOI: 10.1088/1674-1056/22/6/068901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Analysis of network traffic flow dynamics based on gravitational field theory

Liu Gang (刘刚), Li Yong-Shu (李永树), Zhang Xi-Ping (张喜平)
Faculty of Geosciences and Environmental Engineering, Southwest JiaoTong University, Chengdu 610031, China
Abstract  For further research on the gravity mechanism of routing protocol on complex networks, we introduce the concept of routing awareness depth, represented with ρ . On this basis, we define the calculating formula of the gravity of the transmission route for the packet, and propose a routing strategy based on gravitational field of node and routing awareness depth. In order to characterize the efficiency of the method, we introduce an order parameter η to measure the throughput of the network by the critical value of phase transition from free flow to congestion, and use the node betweenness centrality B to test the transmission efficiency of the network and congestion distribution. We simulate the network transmission performance under different values of routing awareness depth ρ . Simulation results show that if the value of routing awareness depth ρ is too small, the gravity of the route is composed of the attraction of very few nodes on the route, which cannot improve the capacity of the network effectively; if the value of routing awareness depth ρ is greater than the network's average distance <l>, the capacity of the network may be improved greatly and no longer change with the sustainable increment of routing awareness depth ρ , the performance of the routing strategy enters into a constant state; moreover, whatever the value of routing awareness depth ρ is, our algorithm always effectively balances the distribution of betweenness centrality and realizes the equal distribution of network load.
Keywords:  routing strategy      congestion      gravitation field      complex networks  
Received:  05 September 2012      Revised:  06 December 2012      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  89.20.Hh (World Wide Web, Internet)  
Fund: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100184110019), the 2013 Cultivation Project of Excellent Doctorate Dissertation of Southwest Jiaotong University, the 2013 Doctoral Innovation Funds of Southwest Jiaotong University, the Natural Science Research Program of Chongqing Educational Committee, China (Grant No. KJ120528), China Postdoctoral Science Foundation (Grant No. 2011M501412), the National Natural Science Foundation of China (Grant No. 41201475/D0108), and the Fundamental Research Funds for the Central Universities, China (Grant No. A0920502051208-16).
Corresponding Authors:  Liu Gang     E-mail:  liuganggis@sina.com

Cite this article: 

Liu Gang (刘刚), Li Yong-Shu (李永树), Zhang Xi-Ping (张喜平) Analysis of network traffic flow dynamics based on gravitational field theory 2013 Chin. Phys. B 22 068901

[1] Daniele D M, Luca D A, Ginestra B and Matteo M 2007 Phys. Rev. E 79 015101
[2] Perotti J I and Billoni O V 2012 Phys. Rev. E 86 011120
[3] Li S B, Wu J J, Gao Z Y, Lin Y and Fu B B 2011 Acta Phys. Sin. 60 050701 (in Chinese)
[4] Echenique P, Gomez-Gardenes J and Moreno Y 2005 Europhys. Lett. 71 325
[5] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[6] Newman M E J 2010 Networks: An Introduction (Oxford: Oxford University Press)
[7] Ramascc J J, Lama M S L, Eduardo L and Boettcher S 2010 Phys. Rev. E 82 036119
[8] Yan G, Zhou T, Hu B, Fu Z Q and Wang B H 2006 Phys. Rev. E 73 046108
[9] Zhou S Y, Wang K, Zhang Y F, Pei W J, Pu C L and Li W 2011 Chin. Phys. B 20 080501
[10] Shen Y, Pei W J, Wang K and Wang S P 2009 Chin. Phys. B 18 3783
[11] Noh J D 2004 Phys. Rev. Lett. 92 11
[12] Yang S J 2005 Phys. Rev. E 71 016107
[13] Liu F, Zhao H, Li M, Ren F Y and Zhu Y B 2010 Chin. Phys. B 19 040513
[14] Wang D, Yu H, Jing Y W, Jiang N and Zhang S Y 2009 Acta Phys. Sin. 58 6802 (in Chinese)
[15] Goh K I, Kahng B and Kim D 2001 Phys. Rev. Lett. 87 278701
[16] Meng Q K and Zhu J Y 2009 Chin. Phys. B 18 3632
[17] Guimerá R, Díaz-Guilera A, Vega-Redondo F, Cabrales A and Arenas A 2002 Phys. Rev. Lett. 89 248701
[18] Danila B, Yu Y, Marsh J A and Bassler K E 2007 Chaos 17 026102
[19] Danila B, Sun Y D and Bassler K E 2009 Phys. Rev. E 80 066116
[20] Liu G and Li Y S 2012 Acta Phys. Sin. 61 248901 (in Chinese)
[21] Arenas A, Díaz-Guilera A and Guimerá R 2001 Phys. Rev. Lett. 86 3196
[22] Crucitti P, Latora V and Porta S 2006 Chaos 16 015113
[23] Li Q Q, Zeng Z, Yang B S and Li B J 2010 Geomatics and Information Science of Wuhan University 35 37
[24] Freeman L G 1977 Sociometry 40 35
[25] Barabási A L and Albert R 1999 Science 286 509
[26] Echenique P, Gomez-Gardenes J and Moreno Y 2004 Phys. Rev. E 70 056105
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[5] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[6] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[9] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[10] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[11] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[12] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[13] Major impact of queue-rule choice on the performance of dynamic networks with limited buffer size
Xiang Ling(凌翔), Xiao-Kun Wang(王晓坤), Jun-Jie Chen(陈俊杰), Dong Liu(刘冬), Kong-Jin Zhu(朱孔金), Ning Guo(郭宁). Chin. Phys. B, 2020, 29(1): 018901.
[14] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[15] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
No Suggested Reading articles found!