Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 066202    DOI: 10.1088/1674-1056/22/6/066202
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High-pressure Raman study of MgV2O6 synthesized at high pressure and high temperature

Tang Rui-Lian (唐瑞莲)a, Li Yan (李岩)a b, Tao Qiang (陶强)a, Li Na-Na (李娜娜)a, Li Hui (李会)a, Han Dan-Dan (韩丹丹)a, Zhu Pin-Wen (朱品文)a, Wang Xin (王欣)a
a State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
b College of Physics, Jilin University, Changchun 130012, China
Abstract  A new structural phase of MgV2O6 was obtained by a high-pressure, high-temperature (HPHT) synthesis method. The new phase was investigated by Rietveld analysis of X-ray powder diffraction data, showing space group Pbcn (No. 60) symmetry and a=13.6113(6) Å (1 Å=0.1 nm), b=5.5809(1) Å, c=4.8566(3) Å, V=368.93(2) Å3 (Z=4). High pressure behavior was studied by Raman spectroscopy at room temperature. Under 22.5 GPa, there was no sign of a structural phase transition in the spectra, demonstrating stability of the HPHT phase up to the highest pressure.
Keywords:  high-pressure and high-temperature      MgV2O6      Raman spectroscopy      high-pressure  
Received:  20 October 2012      Revised:  06 January 2013      Accepted manuscript online: 
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51172091) and the Program for New Century Excellent Talents in University.
Corresponding Authors:  Wang Xin     E-mail:  xin_wang@jlu.edu.cn

Cite this article: 

Tang Rui-Lian (唐瑞莲), Li Yan (李岩), Tao Qiang (陶强), Li Na-Na (李娜娜), Li Hui (李会), Han Dan-Dan (韩丹丹), Zhu Pin-Wen (朱品文), Wang Xin (王欣) High-pressure Raman study of MgV2O6 synthesized at high pressure and high temperature 2013 Chin. Phys. B 22 066202

[1] Desilvestro J and Haas O 1990 J. Electrochem. Soc. 137 5
[2] Wang X J, Fe i Y J, Xiong Y Y, Nie Y X, Feng K A and Li L D 2002 Chin. Phys. 11 737
[3] Li Z, Yang H, Tian H, Zhang Y and Li J 2008 Chin. J. Chem. Phys. 20 727
[4] Wang X J, Liang C J, Guan K P, Li D H, Nie Y X, Zhu S O, Huang F, Zhang W W and Cheng Z W 2008 Chin. Phys. B 17 3512
[5] Bo Z, Qing S and De Y H 2009 Chin. Phys. B 18 4988
[6] Hara D, Shirakawa J, Ikuta H and Uchimoto Y 2002 J. Mater. Chem. 12 3717
[7] Inagaki M 2003 Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan 123 323
[8] Liu H and Tang D 2009 Mater. Chem. Phys. 114 656
[9] Ng H N and Calvo C 1972 Can. J. Chem. 50 3619
[10] Müller B H and Kobel M 1991 Z. Anorg. Allg. Chem. 596 23
[11] Mocala K and Ziólkowski J 1987 J. Solid State Chem. 69 299
[12] Cao J Q, Wang X Y, Tang A and Wang X 2009 J. Alloys Compd. 479 875
[13] Gondrand M, Collomb A, Joubert J and Shannon R 1974 J. Solid State Chem. 11 1
[14] Inagaki M, Morishita T, Hirano M and Gupta V 2003 Solid State Ionics 156 275
[15] Angenault J 1970 Rev. Chim. Miner. 7 651
[16] Angenault J and Rimsky A 1968 Compt. Rend. Acad. Sci. Paris 267 227
[17] Mao H, Bell P, Shaner J W and Steinberg D 1978 J. Appl. Phys. 49 3276
[18] Larson A C and Von Dreele R B 1994 General Structure Analysis System: LANSCE, MS-H805, Los Alamos, New Mexico
[19] Li L, Feng G, Wang D and Yang H 2011 J. Alloys Compd. 509 L263
[20] Husson E, Repelin Y, Dao N Q and Brusset H 1977 Spectrochimica Acta Part A: Molecular Spectroscopy 33 995
[21] Husson E, Repelin Y, Dao N Q and Brusset H 1977 J. Chem. Phys. 67 1157
[22] Husson E, Repelin Y, Dao N Q and Brusset H 1977 J. Chem. Phys. 66 5173
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[3] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[4] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[5] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[6] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[7] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[8] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[9] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[10] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[11] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[12] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[13] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[14] Pressure-induced phase transition in transition metal trifluorides
Peng Liu(刘鹏), Meiling Xu(徐美玲), Jian Lv(吕健), Pengyue Gao(高朋越), Chengxi Huang(黄呈熙), Yinwei Li(李印威), Jianyun Wang(王建云), Yanchao Wang(王彦超), and Mi Zhou(周密). Chin. Phys. B, 2022, 31(10): 106104.
[15] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
No Suggested Reading articles found!