Abstract This paper studies the force network properties of marginally and deeply jammed packings of frictionless soft particles from the perspective of complex network theory. We generate zero-temperature granular packings at different pressures by minimizing the inter-particle potential energy. The force networks are constructed as nodes representing particles and links representing normal forces between the particles. Deeply jammed solids show remarkably different behavior from marginally jammed solids in their degree distribution, strength distribution, degree correlation, and clustering coefficient. Bimodal and multi-modal distributions emerge when the system enters deep jamming region. The results also show that small and large particles can show different correlation behavior in this simple system.
Characteristics of vapor based on complex networks in China Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.