Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 066201    DOI: 10.1088/1674-1056/22/6/066201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A first-principles study of the structural and elastic properties of orthorhombic and tetragonal Ca3Mn2O7

Zhang Wei (张玮)a, Tong Pei-Qing (童培庆)a b
a Department of Physics, Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China;
b Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, Nanjing Normal University, Nanjing 210023, China
Abstract  The structural and elastic properties of multiferroic Ca3Mn2O7 with ferroelectric orthorhombic (O-phase) and paraelectric tetragonal structures (T-phase) have been studied by first-principles calculations within the generalized gradient approximation (GGA) and the GGA plus Hubbard U approaches (GGA+U). The calculated theoretical structures are in good agreement with the experimental values. The T-phase is found to be antiferromagnetic (AFM) and the AFM O-phase is more stable than the T-phase, which also agree with the experiments. On these basis, the single-crystal elastic constants (Cijs) and elastic properties of polycrystalline aggregates are investigated for the two phases. Our elasticity calculations indicate Ca3Mn2O7 is mechanically stable against volume expansions. The AFM O-phase is found to be a ductile material, while the AFM T-phase shows brittle nature and tends to be elastically isotropic. We also investigate the influence of strong correlation effects on the elastic properties, qualitatively consistent results are obtained in a reasonable range of values of U. Finally, the ionicity is discussed by Bader analysis. Our work provides useful guidance for the experimental elasticity measurements of Ca3Mn2O7, and makes the strain energy calculation in multiferroic Ca3Mn2O7 thin films possible.
Keywords:  elastic constant      elastic anisotropy      strong correlation effect      multiferroic  
Received:  04 December 2012      Revised:  05 March 2013      Accepted manuscript online: 
PACS:  62.20.de (Elastic moduli)  
  64.30.Jk (Equations of state of nonmetals)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175087) and the Project of Graduate Students' Education and Innovation Foundation of Jiangsu Province (Grant No. CXZZ12_0388).
Corresponding Authors:  Tong Pei-Qing     E-mail:  pqtong@njnu.edu.cn

Cite this article: 

Zhang Wei (张玮), Tong Pei-Qing (童培庆) A first-principles study of the structural and elastic properties of orthorhombic and tetragonal Ca3Mn2O7 2013 Chin. Phys. B 22 066201

[1] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
[2] Neaton J B, Ederer C, Waghmare U V, Spaldin N A and Rabe K M 2005 Phys. Rev. B 71 014113
[3] Ederer C and Neaton J B 2005 Phys. Rev. B 71 060401(R)
[4] Diéguez O and Iñiguez J 2011 Phys. Rev. Lett. 107 057601
[5] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55
[6] Xiang H J, Wei S H, Whangbo M H and Da Silva J L F 2008 Phys. Rev. Lett. 101 037209
[7] Malashevich A and Vanderbilt D 2009 Phys. Rev. B 80 224407
[8] Rovillain P, Cazayous M, Gallais Y, Measson M A, Sacuto A, Sakata H and Mochizuki M 2011 Phys. Rev. Lett. 107 027202
[9] Kimura T, Tomioka Y, Kuwahara H, Asamitsu A, Tamura M and Tokura Y 1996 Science 274 1698
[10] Benedek N A and Fennie C J 2011 Phys. Rev. Lett. 106 107204
[11] Ruddlesden S N and Popper P 1957 Acta Crystallogr. 10 538
[12] Momma K and Izumi F 2008 J. Appl. Crystallogr. 41 653
[13] Guiblin N, Grebille D, Leligny H and Martin C 2002 Acta Crystallogr. Sect. C 58 i3
[14] Bendersky L A, Greenblatt M and Chen R 2003 J. Solid State Chem. 174 418
[15] Lobanov M V, Greenblatt M, Caspi E N, Jorgensen J D, Sheptyakov D V, Toby B H, Botez C E and Stephens P W 2004 J. Phys.: Condens. Matter 16 5339
[16] Fawcett I D, Sunstrom IV J E, Greenblatt M, Croft M and Ramanujachary K V 1998 Chem. Mater. 10 3643
[17] Matar S F, Eyert V, Villesuzanne A and Whangbo M H 2007 Phys. Rev. B 76 054403
[18] Cardoso C, Borges R P, Gasche T and Godinho M 2008 J. Phys.: Condens. Matter 20 035202
[19] Shen J Y, Johnston S, Shang S L and Anderson T 2002 J. Cryst. Growth 240 6
[20] Gressmann T, Wohlschlögel M, Shang S L, Welzel U, Leineweber A, Mittemeijer E J and Liu Z K 2007 Acta Mater. 55 5833
[21] Chen L Q 2002 Ann. Rev. Mater. Res. 32 113
[22] Zhang J X, Li Y L, Wang Y, Liu Z K, Chen L Q, Chu Y H, Zavaliche F and Ramesh R 2007 J. Appl. Phys. 101 114105
[23] Sheng G, Hu J M, Zhang J X, Li Y L, Liu Z K and Chen L Q 2012 Acta Mater. 60 3296
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Perdew J P, Burke K and Ernzerhof M 1997 Phys. Rev. Lett. 78 1396
[28] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[29] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[30] Beckstein O, Klepeis J E, Hart G L W and Pankratov O 2001 Phys. Rev. B 63 134112
[31] Birch F 1947 Phys. Rev. 71 809
[32] Born M and Huang K 1988 Dynamical Theory of Crystal Lattices (New York: Oxford University Press)
[33] Voigt D W 1928 Lehrbuch der Kristallphysik (Leipzig: Teubner Press)
[34] Reuss A and Angew Z 1929 Math. Mech. 9 55
[35] Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
[36] Schneider E, Anderson O L and Soga N 1974 Elastic Constants and Their Measurement (New York: McGraw-Hill Press)
[37] Pugh S F 1954 Phil. Mag. 45 823
[38] Tvergaard V and Hutchinson J W 1988 J. Am. Ceram. Soc. 71 157
[39] Chung D H and Buessem W R 1968 Anisotropy in Single Crystal Refractory Compounds (New York: Plenum)
[40] Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
[41] Shang S L, Saengdeejing A, Mei Z G, Kim D E, Zhang H, Ganeshan S, Wang Y and Liu Z K 2010 Comput. Mater. Sci. 48 813
[42] Bader R F W 1990 Atoms in Molecules: A Quantum Theory (Oxford: Oxford University Press)
[43] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204
[1] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[2] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[3] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[4] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[5] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[6] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[7] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[8] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
[9] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[10] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[11] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
[12] Enhanced ferromagnetism and magnetoelectric response in quenched BiFeO3-based ceramics
Qi Pan(潘祺), Bao-Jin Chu(初宝进). Chin. Phys. B, 2020, 29(8): 087501.
[13] First-principles investigation on ideal strength of B2 NiAl and NiTi alloys
Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东). Chin. Phys. B, 2020, 29(3): 036201.
[14] Magnetoelectric effects in multiferroic Y-type hexaferrites Ba0.3Sr1.7CoxMg2-xFe12O22
Yanfen Chang(畅艳芬), Kun Zhai(翟昆), Young Sun(孙阳). Chin. Phys. B, 2020, 29(3): 037701.
[15] Composition effect on elastic properties of model NiCo-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026102.
No Suggested Reading articles found!