Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 124201    DOI: 10.1088/1674-1056/21/12/124201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spin Hall effect of light beam in anisotropic metamaterials

Tang Ming (唐明), Zhou Xin-Xing (周新星), Luo Hai-Lu (罗海陆), Wen Shuang-Chun (文双春)
Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Information Science and Engineering, Hunan University, Changsha 410082, China
Abstract  We theoretically investigate a switchable spin Hall effect of light (SHEL) in reflection for three specific dispersion relations at an air-anisotropic metamaterial interface. The displacements of horizontal and vertical polarization components vary with the incident angle at different dispersion relations. The transverse displacements can be obtained with the relevant metamaterial whose refractive index can be arbitrarily tailed. The results of the SHEL in the metamaterial provide a new way for manipulating the transverse displacements of a specific polarization component.
Keywords:  spin Hall effect of light      metamaterials      horizontal polarization      vertical polarization  
Received:  15 May 2012      Revised:  20 July 2012      Accepted manuscript online: 
PACS:  42.25.-p (Wave optics)  
  42.79.-e (Optical elements, devices, and systems)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 61025024 and 11074068).
Corresponding Authors:  Luo Hai-Lu     E-mail:  hailuluo@hnu.edu.cn

Cite this article: 

Tang Ming (唐明), Zhou Xin-Xing (周新星), Luo Hai-Lu (罗海陆), Wen Shuang-Chun (文双春) Spin Hall effect of light beam in anisotropic metamaterials 2012 Chin. Phys. B 21 124201

[1] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603
[2] Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
[3] Wunderlich J, Kaestner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
[4] Onoda M, Murakami S and Nagaosa N 2004 Phys. Rev. Lett. 93 083901
[5] Bliokh K Y and Bliokh Y P 2006 Phys. Rev. Lett. 96 073903
[6] Luo H, Zhou X, Wen S, Shu W and Fan D 2011 Phys. Rev. A 84 043806
[7] Bliokh K Y, Niv A, Kleiner V and Hasman E 2008 Nat. Photon. 2 748
[8] Gosselin P, Bérard A and Mohrbach H 2007 Phys. Rev. D 75 084035
[9] Aiello A and Woerdman J P 2008 Opt. Lett. 33 1437
[10] Aiello A, Lindlein N, Marquardt C and Leuchs G 2009 Phys. Rev. Lett. 103 100401
[11] Luo H, Wen S, Shu W, Tang Z, Zou Y and Fan D 2009 Phys. Rev. A 80 043810
[12] Ma J, Luo H L and Wen S C 2011 Acta Phys. Sin. 60 094205 (in Chinese)
[13] Liu S, Luo H L and Wen S C 2011 Acta Phys. Sin. 60 074208 (in Chinese)
[14] Luo X and Luo H L 2011 Acta Phys. Sin. accepted (in Chinese)
[15] Ling X H, Luo H L, Tang M and Wen S C 2012 Chin. Phys. Lett. 29 074209
[16] Haefner D, Sukhov S and Dogariu A 2009 Phys. Rev. Lett. 102 123903
[17] Rodríguez-Herrera O G, Lara D, Bliokh K Y, Ostrovskaya E A and Dainty C 2010 Phys. Rev. Lett. 104 253601
[18] Qin Y, Li Y, Feng X, Liu Z, He H, Xiao Y and Gong Q 2010 Opt. Express 18 16832
[19] Ménard J, Mattacchione A E, Vandriel Hautmann H M C and Betz M 2010 Phys. Rev. B 82 045303
[20] Luo H, Ling X, Shu W, Wen S and Fan D 2011 Phys. Rev. B 84 033801
[21] Zhou X, Xiao Z, Luo H and Wen S 2012 Phys. Rev. A 85 043809
[22] Hu L and Chui S T 2002 Phys. Rev. B 66 085108
[23] Smith D R and Schurig D 2003 Phys. Rev. Lett. 90 077405
[24] Zhou L, Chan C T and Sheng P 2003 Phys. Rev. B 68 115424
[25] Luo H, Hu W, Yi X, Liu H and Zhu J 2005 Opt. Commun. 254 353
[26] Shen N H, Wang Q, Chen J, Fan Y X, Ding J, Wang H T, Tian Y and Ming N B 2005 Phys. Rev. B 72 153104
[27] Luo H, Shu W, Li F and Ren Z 2006 Opt. Commun. 267 271
[28] Luo H, Hu W, Shu W, Li F and Ren Z 2006 Europhys. Lett. 74 1081
[29] Yi X L, Liu J S, Chen H and Du Q J 2010 Chin. Phys. B 19 114204
[30] Yariv A and Yeh P 1984 Optical Waves in Crystals (New York: Wiley)
[31] Born M and Wolf E 1999 Principles of Optics (New York: Cambridge University Press)
[32] Lindell I V, Tretyakov S A, Nikoskinen K I and Ilvonen S 2001 Microw. Opt. Technol. Lett. 31 129
[33] Pendry J, Schurig D and Smith D 2006 Science 312 1780
[34] Lanndau and Lifshitz E M 1960 Electrodynamics of Continuous Media (New York: Pergamon) Chap. 11
[35] Pochi Y 1979 J. Opt. Soc. Am. 69 742
[36] Luo H, Ren Z, Shu W and Li F 2007 Appl. Phys. A 87 245
[37] Hosten O and Kwiat P 2008 Science 319 787
[38] Qin Y, Li Y, He H Y and Gong Q H 2009 Opt. Lett. 34 2551
[1] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[2] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[3] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[4] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[5] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[6] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[7] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[8] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[9] Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials
Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏). Chin. Phys. B, 2021, 30(9): 096103.
[10] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[11] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[12] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[13] Efficient and multifunctional terahertz polarization control device based on metamaterials
Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2020, 29(11): 114209.
[14] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[15] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
No Suggested Reading articles found!