Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057303    DOI: 10.1088/1674-1056/21/5/057303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Graphene films grown on sapphire substrates via solid source molecular beam epitaxy

Tang Jun(唐军)a)b), Kang Chao-Yang(康朝阳)a), Li Li-Min(李利民)a), Liu Zhong-Liang(刘忠良)c)†, Yan Wen-Sheng(闫文盛)a), Wei Shi-Qiang(韦世强)a), and Xu Peng-Shou(徐彭寿)a)
a. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China;
b. Hefei IRICO Epilight Technology Co., Ltd., Hefei 230011, China;
c. School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, China
Abstract  A method for growing graphene on a sapphire substrate by depositing an SiC buffer layer and then annealing at high temperature in solid source molecular beam epitaxy (SSMBE) equipment was presented. The structural and electronic properties of the samples were characterized by reflection high energy diffraction (RHEED), X-ray diffraction Φ scans, Raman spectroscopy, and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The results of the RHEED and Φ scan, as well as the Raman spectra, showed that an epitaxial hexagonal α-SiC layer was grown on the sapphire substrate. The results of the Raman and NEXAFS spectra revealed that the graphene films with the AB Bernal stacking structure were formed on the sapphire substrate after annealing. The layer number of the graphene was between four and five, and the thickness of the unreacted SiC layer was about 1--1.5 nm.
Keywords:  graphene      SiC layer      sapphire substrate  
Received:  14 October 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  73.22.Pr (Electronic structure of graphene)  
  74.25.nd (Raman and optical spectroscopy)  
  78.70.Dm (X-ray absorption spectra)  
  72.80.Sk (Insulators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50872128), the Anhui Provincial Natural Science Foundation, China (Grant No. 11040606M64), and the Anhui Provincial Natural Science Foundation of Higher Education Institutions, China (Grant No. KJ2010B189).

Cite this article: 

Tang Jun(唐军), Kang Chao-Yang(康朝阳), Li Li-Min(李利民), Liu Zhong-Liang(刘忠良), Yan Wen-Sheng(闫文盛), Wei Shi-Qiang(韦世强), and Xu Peng-Shou(徐彭寿) Graphene films grown on sapphire substrates via solid source molecular beam epitaxy 2012 Chin. Phys. B 21 057303

[1] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379
[2] Geim A K and Novoselov K S 2007 Nature Mater. 6 183
[3] Li D and Kaner R B 2008 Science 320 1170
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[5] Novoselov K S, McCann E, Morozov S V, Falko V I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nature Phys. 2 177
[6] Su Q, Pang S, Alijani V, Li C, Feng X and Mullen K 2009 Adv. Mater. 21 3191
[7] Ji Z Y, Wu J L, Shen X P, Zhou H and Xi H T 2011 J. Mater. Sci. 46 1190
[8] Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W and Chen Y S 2008 Adv. Mater. 20 3924
[9] Lin T Q, Huang F Q, Liang J and Wang Y X 2011 Energy & Environmental Science 4 862
[10] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K and Tour J M 2009 Nature 458 872
[11] Tang C J, Li J, Meng L J, Sun L Z, Zhang K W and Zhong K W 2009 Acta Phys. Sin. 58 7815 (in Chinese)
[12] Kang C Y, Tang J, Li L M, Pan H B, Yan W S, Xu P S, Wei S Q, Chen X F and Xu X G 2011 Acta Phys. Sin. 60 047302 (in Chinese)
[13] Tang J, Kang C Y, Li L M, Yan W S, Wei S Q and Xu P S 2011 Physica E 43 1415
[14] Tsukamoto T and Ogino T 2009 Applied Physics Express 2 075502
[15] Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo C M, Tsuji M, Ikeda K and Mizuno S 2010 ACS Nano. 4 7407
[16] Ismach A, Druzgalski C, Penwell S, Schwartzberg A, Zheng M, Javey A, Bokor J and Zhang Y G 2010 Nano. Lett. 10 1542
[17] McArdle T J, Chu J O, Zhu Y, Liu Z H, Krishnan M, Breslin C M, Dimitrakopoulos C, Wisnieff R and Grill A 2011 Appl. Phys. Lett. 98 132108
[18] Park J, Mitchel W C, Grazulis L, Smith H E, Eyink K G, Boeckl J J, Tomich D H, Pacley S D and Hoelscher J E 2010 Adv. Mater. 22 4140
[19] Hackley J, Ali D, DiPasquale J, Demaree J D and Richardson C J K 2009 Appl. Phys. Lett. 95 133114
[20] Cimalla V, Stauden Th, Ecke G, Scharmann F, Eichhorn G, Cimalla V and Stauden Th 1998 Appl. Phys. Lett. 73 3542
[21] Zekentes K, Papaioannou V and Pecz B 1995 J. Cryst. Growth 157 392
[22] Li J C, Batoni P and Tsu R 2010 Thin Solid Films 518 1658
[23] Wang K F, Liu J F, Zou C W, Xu P S, Pan H B, Zhang X G and Wang W G 2005 J. Vac. Sci. Tech. 25 75
[24] Kang C Y, Liu Z L, Tang J, Chen X C, Xu P S and Pan G Q 2010 Journal of Synthetic Crystals 39 308 (in Chinese)
[25] Kubler L, Aït-Mansour K, Diani M, Dentel D, Bischoff J L and Derivaz M 2005 Phys. Rev. B 72 115319
[26] Brizard C, Rolland G and Laugier F 1993 Journal of Applied Crystallography 26 570
[27] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[28] Nienhaus H, Kampen T U and Monch W 1995 Surface Science 324 L328
[29] Barros E B, Demir N S, Souza Filho A G, Mendes Filho J, Jorio A, Dresselhaus G and Dresselhaus M S 2005 Phys. Rev. B 71 165422
[30] Malarda L M, Pimentaa M A, Dresselhaus G and Dresselhaus M S 2009 Phys. Rep. 473 51
[31] Ni Z H, Chen W, Fan X F, Kuo J L, Yu T, Wee A T S and Shen Z X 2008 Phys. Rev. B 77 115416
[32] Röhrl J, Hundhausen M, Emtsev K V, Seyller Th, Graupner R and Ley L 2008 Appl. Phys. Lett. 92 01918
[33] Emtsev K V, Speck F, Seyller Th and Ley L 2008 Phys. Rev. B 77 155303
[34] Gupta A, Chen G, Joshi P, Tadigadapa S and Eklund P C 2006 Nano. Lett. 6 2667
[35] Rosenberg R A, Love P G and Rehn V 1986 Phys. Rev. B 33 4034
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[12] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!