Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057302    DOI: 10.1088/1674-1056/21/5/057302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Plasmons in a free-standing nanorod with a two-dimensional parabolic quantum well caused by surface states

Song Ya-Feng(宋亚峰)a), Lü Yan-Wu(吕燕伍)b), Wen Wei(文伟)c), Liu Xiang-Lin(刘祥林)a), Yang Shao-Yan(杨少延)a), Zhu Qin-Sheng(朱勤生)a)†, and Wang Zhan-Guo(王占国)a)
a. Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b. Department of Physics, Beijing Jiaotong University, Beijing 100044, China;
c. State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The collective charge density excitations in a free-standing nanorod with a two-dimensional parabolic quantum well are investigated within the framework of Bohm--Pine's random-phase approximation in the two-subband model. The new simplified analytical expressions of the Coulomb interaction matrix elements and dielectric functions are derived and numerically discussed. In addition, the electron density and temperature dependences of dispersion features are also investigated. We find that in the two-dimensional parabolic quantum well, the intrasubband upper branch is coupled with the intersubband mode, which is quite different from other quasi-one-dimensional systems like a cylindrical quantum wire with an infinite rectangular potential. In addition, we also find that higher temperature results in the intersubband mode (with an energy of 12 meV (~ 3 THz)) becoming totally damped, which agrees well with the experimental results of Raman scattering in the literature. These interesting properties may provide useful references to the design of free-standing nanorod based devices.
Keywords:  plasmons      two-dimensional parabolic quantum well      terahertz nanodevices      nanorod  
Received:  18 October 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.21.Hb (Quantum wires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60976008, 61006004, 61076001, and 10979507), the National Basic Research Program of China (Grant No. A000091109-05), and the National High Technology Research and Development Program of China (Grant No. 2011AA03A101)

Cite this article: 

Song Ya-Feng(宋亚峰), Lü Yan-Wu(吕燕伍), Wen Wei(文伟), Liu Xiang-Lin(刘祥林), Yang Shao-Yan(杨少延), Zhu Qin-Sheng(朱勤生), and Wang Zhan-Guo(王占国) Plasmons in a free-standing nanorod with a two-dimensional parabolic quantum well caused by surface states 2012 Chin. Phys. B 21 057302

[1] Pinczuk A, Rink S S and Danan G 1989 Phys. Rev. Lett. 63 1633
[2] Goni A R, Pinczuk A, Weiner J S, Calleja J M, Denni s B S, Pfeiffer L N and West K W 1991 Phys. Rev. Lett. 67 3298
[3] Chen G H, Zhang F Q and Xu X X 1983 Acta Phys. Sin. 32 803 (in Chinese)
[4] Strenz R, Bockelmann U, Hirler F, Abstreiter G, Bohm G and Weimann G 1994 Phys. Rev. Lett. 73 3022
[5] Yang H X, Han R and Wang P 2008 Chin. Phys. B 17 3459
[6] Liu X H, Wang X H and Gu B Y 2001 Phys. Rev. B 64 195322
[7] Kushwaha M S and Sakaki H 2004 Phys. Rev. B 69 155331
[8] Li Q P and Sarma S D 1991 Phys. Rev. B 43 11768
[9] Borges A N, Leao S A and Hipolito O 1997 Phys. Rev. B 55 4680
[10] Ashraf S S Z and Sharma A C 2005 J. Phys.:Condens. Matter 17 3043
[11] Wang Y, He X J, Wu Y M, Wu Q, Mei J S, Li L W, Yang F X, Zhao T and Li L W 2011 Acta Phys. Sin. 60 107301 (in Chinese)
[12] Wang L, Cai W, Tan X H, Xiang Y X, Zhang X Z and Xu J J 2011 Acta Phys. Sin. 60 067305 (in Chinese)
[13] Bkshi P, Kempa K, Sqcorupsky A, Du C G, Feng G, Zobl R, Strasser G, Rauch C, Pacher C, Unterrainer K and Gornik E 1999 Appl. Phys. Lett. 75 1685
[14] Atwater H A and Polman A 2010 Nat. Mater. 9 205
[15] Yang X R, XU B, Wang H F, Zhao G Q, Shi S H, Shen X Z, Li J F and Wang Z G 2011 Chin. Phys. Lett. 28 027801
[16] Yao W J, Yu Z Y and Liu Y M 2010 Chin. Phys. B 19 077101
[17] Zhang H, Zhang C Y, Zhang H L and Liu J J 2011 Acta Phys. Sin. 60 077301 (in Chinese)
[18] Bratschitsch R, Muller T, Kersting R, Strasser G and Unterrainer K 2000 Appl. Phys. Lett. 76 3501
[19] Parkinson P, Lloyd H J, Gao Q, Tan H H, Jagadish C, Johnston M B, Herz L M 2007 Nano. Lett. 7 2162
[20] Jung G B, Cho Y J, Myung Y, Kim H S, Seo Y S, Park J and Kang C 2010 Opt. Express 18 16353
[21] Persson M P and Xu H Q 2006 Phys. Rev. B 73 035328
[22] Davydok A, Biermanns A, Pietsch U, Grenzer J, Paetzelt H, Gottschalch V and Bauer J 2009 Phys. Status Solidi A 206 1704
[23] Lee H G, Jeon H C, Kang T W and Kim T W 2001 Appl. Phys. Lett. 78 3319
[24] Kayes B M, Atwater H A and Lewis N S 2005 J. Appl. Phys. 97 114302
[25] Willander M, Nur O, Zhao Q X et al. 2009 Nanotechnology 20 332001
[26] Ludeke R and Koma A 1976 J. Vac. Sci. Technol. 13 241
[27] Gregory P E, Spicer W E, Ciraci S and Harrison W A 1974 Appl. Phys. Lett. 25 511
[28] Chruscinski D 2006 Ann. Phys. 321 840
[29] Pinczuk A and Abstreiter G 1989 Light Scattering in Solids V (Berlin:Springer Verlag) p. 153
[30] Wendler L and Grigoryan V G 1994 Phys. Stat. Sol. (b) 181 133
[31] Martorell J and Sprung D W 1996 Phys. Rev. B 54 11386
[32] Vazifehshenas T 2008 Phys. Stat. Sol. (a) 205 1302
[33] Matsumodo T, Haraguchi M, Fukui M, Kubo H and Hamaguchi C 1996 Jpn. J. Appl. Phys. 352068
[34] Shmelev G M, Chaikovskii I A, Pavlovich V V and Epshtein E M 1977 Phys. Stat. Sol. (b) 80 697
[1] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[2] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[3] Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东). Chin. Phys. B, 2021, 30(7): 077308.
[4] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[5] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[6] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[7] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[8] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[9] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[10] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[11] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
[12] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[13] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
[14] Strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media
Kunwei Pang(庞昆维), Haihong Li(李海红), Gang Song(宋钢), Li Yu(于丽). Chin. Phys. B, 2019, 28(12): 127301.
[15] Plasmon reflection reveals local electronic properties of natural graphene wrinkles
Runkun Chen(陈闰堃), Cui Yang(杨翠), Yuping Jia(贾玉萍), Liwei Guo(郭丽伟), Jianing Chen(陈佳宁). Chin. Phys. B, 2019, 28(11): 117302.
No Suggested Reading articles found!