Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 036801    DOI: 10.1088/1674-1056/21/3/036801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Electronic structures and vibrational properties of coronene on Ru(0001): first-principles study

Zhang Yu-Yang(张余洋), Du Shi-Xuan(杜世萱), and Gao Hong-Jun(高鸿钧)
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We calculate the configurations, electronic structures, vibrational properties at the coronene/Ru(0001) interface, and adsorption of a single Pt atom on coronene/Ru(0001) based on density functional theory calculations. The geometric structures and electronic structures of the coronene on Ru(0001) are compared with those of the graphene/Ru(0001). The results show that the coronene/Ru(0001) can be a simplified model system used to describe the interaction between graphene and ruthenium. Further calculations of the vibrational properties of coronene molecule adsorbed on Ru(0001) suggest that the phonon properties of differently corrugated regions of graphene on Ru(0001) are different. This model system is also used to investigate the selective adsorption of Pt atoms on graphene/Ru(0001). The configurations of Pt on coronene/Ru(0001) with the lowest binding energy give clues to explain the experimental observation that a Pt cluster selectively adsorbs on the second highest regions of graphene/Ru(0001). This work provides a simple model for understanding the adsorption properties and vibrational properties of graphene on Ru(0001) substrate.
Keywords:  coronene/Ru(0001) interface      surface adsorption      phonon calculation      first-principles calculation  
Received:  28 October 2011      Revised:  09 November 2011      Accepted manuscript online: 
PACS:  68.43.Bc (Ab initio calculations of adsorbate structure and reactions)  
  68.35.Ja (Surface and interface dynamics and vibrations)  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874219), the National Basic Research Program of China (Grant Nos. 2011CB921702 and 2011CB808401), and the Shanghai Supercomputing Center, China.
Corresponding Authors:  Du Shi-Xuan,sxdu@iphy.ac.cn     E-mail:  sxdu@iphy.ac.cn

Cite this article: 

Zhang Yu-Yang(张余洋), Du Shi-Xuan(杜世萱), and Gao Hong-Jun(高鸿钧) Electronic structures and vibrational properties of coronene on Ru(0001): first-principles study 2012 Chin. Phys. B 21 036801

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[3] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571
[4] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379
[5] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[6] Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G and Mceuen P L 2007 Science 315 490
[7] Ang P K, Chen W, Wee A, Thye S and Loh K P 2008 J. Am. Chem. Soc. 130 14392
[8] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T and Ruoff R S 2006 Nature 442 282
[9] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
[10] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
[11] Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater. 21 2777
[12] N'Diaye A T, Coraux J, Plasa T N, Busse C and Michely T 2008 New J. Phys. 10 043033
[13] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[14] Martoccia D, Willmott P R, Brugger T, Björck M, G黱ther S, Schlep黷z C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W and Greber T 2008 Phys. Rev. Lett. 101 126102
[15] Loginova E, Bartelt N C, Feibelman P J and Mccarty K F 2009 New J. Phys. 11 063046
[16] Coraux J, N'Diaye A T, Engler M, Busse C, Wall D, Buckanie N, Heringdorf F J M zu, van Gastel R, Poelsema B and Michely T 2009 New J. Phys. 11 023006
[17] Starodub E, Bostwick A, Moreschini L, Nie S, Gabaly F E, McCarty K F and Rotenberg E 2011 Phys. Rev. B 83 125428
[18] Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, van den Brink J and Kelly P J 2009 Phys. Rev. B 79 195425
[19] Vanin M, Mortensen J J, Kelkkanen A K, Garcia-Lastra J M, Thygesen K S and Jacobsen K W 2010 Phys. Rev. B 81 081408
[20] Jiang D E, Du M H and Dai S 2009 J. Chem. Phys. 130 074705
[21] Wang B, Bocquet M L, Marchini S, G黱ther S and Wintterlin J 2008 Phys. Chem. Chem. Phys. 10 3530
[22] Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li G and Gao H J 2009 Chin. Phys. B 18 3008
[23] V醶quez de Parga A L, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F and Miranda R 2008 Phys. Rev. Lett. 100 056807
[24] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[25] Kresse G and Furthm黮ler J 1996 Phys. Rev. B 54 11169
[26] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[27] Blöchl P E 1994 Phys. Rev. B 50 17953
[28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[29] Gao H J and Gao L 2010 Prog. Surf. Sci. 85 28
[30] Zhang Y Y, Du S X and Gao H J 2011 Phys. Rev. B 84 125446
[31] Ogawa N, Mikaelian G and Ho W 2007 Phys. Rev. Lett. 98 166103
[32] Vitali L, Burghard M, Schneider M A, Liu L, Wu S Y, Jayanthi C S and Kern K 2004 Phys. Rev. Lett. 93 136103
[33] Huan Q, Jiang Y, Zhang Y Y, Ham U and Ho W 2011 J. Chem. Phys. 135 014705
[34] Pan Y, Gao M, Huang L, Liu F and Gao H J 2009 Appl. Phys. Lett. 95 093106
[35] Stradi D, Barja S, Díaz C, Garnica M, Borca B, Hinarejos J J, S醤chez-Portal D, Alcamí M, Arnau A, V醶quez de Parga A L, Miranda R and Martín F 2011 Phys. Rev. Lett. 106 186102
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!