Abstract We calculate the configurations, electronic structures, vibrational properties at the coronene/Ru(0001) interface, and adsorption of a single Pt atom on coronene/Ru(0001) based on density functional theory calculations. The geometric structures and electronic structures of the coronene on Ru(0001) are compared with those of the graphene/Ru(0001). The results show that the coronene/Ru(0001) can be a simplified model system used to describe the interaction between graphene and ruthenium. Further calculations of the vibrational properties of coronene molecule adsorbed on Ru(0001) suggest that the phonon properties of differently corrugated regions of graphene on Ru(0001) are different. This model system is also used to investigate the selective adsorption of Pt atoms on graphene/Ru(0001). The configurations of Pt on coronene/Ru(0001) with the lowest binding energy give clues to explain the experimental observation that a Pt cluster selectively adsorbs on the second highest regions of graphene/Ru(0001). This work provides a simple model for understanding the adsorption properties and vibrational properties of graphene on Ru(0001) substrate.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874219), the National Basic Research Program of China (Grant Nos. 2011CB921702 and 2011CB808401), and the Shanghai Supercomputing Center, China.
Corresponding Authors:
Du Shi-Xuan,sxdu@iphy.ac.cn
E-mail: sxdu@iphy.ac.cn
Cite this article:
Zhang Yu-Yang(张余洋), Du Shi-Xuan(杜世萱), and Gao Hong-Jun(高鸿钧) Electronic structures and vibrational properties of coronene on Ru(0001): first-principles study 2012 Chin. Phys. B 21 036801
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science306 666
[2] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature438 201
[3] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature448 571
[4] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science315 1379
[5] Geim A K and Novoselov K S 2007 Nat. Mater.6 183
[6] Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G and Mceuen P L 2007 Science315 490
[7] Ang P K, Chen W, Wee A, Thye S and Loh K P 2008 J. Am. Chem. Soc.130 14392
[8] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T and Ruoff R S 2006 Nature442 282
[9] Pan Y, Shi D X and Gao H J 2007 Chin. Phys.16 3151
[10] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science312 1191
[11] Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2009 Adv. Mater.21 2777
[12] N'Diaye A T, Coraux J, Plasa T N, Busse C and Michely T 2008 New J. Phys.10 043033
[13] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science324 1312
[14] Martoccia D, Willmott P R, Brugger T, Björck M, G黱ther S, Schlep黷z C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W and Greber T 2008 Phys. Rev. Lett.101 126102
[15] Loginova E, Bartelt N C, Feibelman P J and Mccarty K F 2009 New J. Phys.11 063046
[16] Coraux J, N'Diaye A T, Engler M, Busse C, Wall D, Buckanie N, Heringdorf F J M zu, van Gastel R, Poelsema B and Michely T 2009 New J. Phys.11 023006
[17] Starodub E, Bostwick A, Moreschini L, Nie S, Gabaly F E, McCarty K F and Rotenberg E 2011 Phys. Rev. B 83 125428
[18] Khomyakov P A, Giovannetti G, Rusu P C, Brocks G, van den Brink J and Kelly P J 2009 Phys. Rev. B 79 195425
[19] Vanin M, Mortensen J J, Kelkkanen A K, Garcia-Lastra J M, Thygesen K S and Jacobsen K W 2010 Phys. Rev. B 81 081408
[20] Jiang D E, Du M H and Dai S 2009 J. Chem. Phys.130 074705
[21] Wang B, Bocquet M L, Marchini S, G黱ther S and Wintterlin J 2008 Phys. Chem. Chem. Phys.10 3530
[22] Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li G and Gao H J 2009 Chin. Phys. B 18 3008
[23] V醶quez de Parga A L, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F and Miranda R 2008 Phys. Rev. Lett.100 056807
[24] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[25] Kresse G and Furthm黮ler J 1996 Phys. Rev. B 54 11169
[26] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[27] Blöchl P E 1994 Phys. Rev. B 50 17953
[28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[29] Gao H J and Gao L 2010 Prog. Surf. Sci.85 28
[30] Zhang Y Y, Du S X and Gao H J 2011 Phys. Rev. B 84 125446
[31] Ogawa N, Mikaelian G and Ho W 2007 Phys. Rev. Lett.98 166103
[32] Vitali L, Burghard M, Schneider M A, Liu L, Wu S Y, Jayanthi C S and Kern K 2004 Phys. Rev. Lett.93 136103
[33] Huan Q, Jiang Y, Zhang Y Y, Ham U and Ho W 2011 J. Chem. Phys.135 014705
[34] Pan Y, Gao M, Huang L, Liu F and Gao H J 2009 Appl. Phys. Lett.95 093106
[35] Stradi D, Barja S, Díaz C, Garnica M, Borca B, Hinarejos J J, S醤chez-Portal D, Alcamí M, Arnau A, V醶quez de Parga A L, Miranda R and Martín F 2011 Phys. Rev. Lett. 106 186102
A new direct band gap silicon allotrope o-Si32 Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.