Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 036301    DOI: 10.1088/1674-1056/21/3/036301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles calculation of the lattice compressibility, elastic anisotropy and thermodynamic stability of V2GeC

Yang Ze-Jin(杨则金)a)†, Guo Yun-Dong(郭云东)b), Linghu Rong-Feng(令狐荣锋)c), and Yang Xiang-Dong(杨向东)d)
a. School of Science, Zhejiang University of Technology, Hangzhou 310023, China;
b. School of Physics, Neijiang Normal University, Neijiang 641112, China;
c. School of Physics, Guizhou Normal University, Guiyang 550001, China;
d. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  We investigate the elastic and the thermodynamic properties of nanolaminate V2GeC by using the ab initio pseudopotential total energy method. The axial compressibility shows that the c axis is always stiffer than the a axis. The elastic constant calculations demonstrate that the structural stability is within 0-800 GPa. The calculations of Young's and shear moduli reveal the softening behaviour at about 300 GPa. The Possion ratio makes a higher ionic or a weaker covalent contribution to intra-atomic bonding and the degree of ionicity increases with pressure. The relationship between brittleness and ductility shows that V2GeC is brittle in ambient conditions and the brittleness decreases and ductility increases with pressure. Moveover, we find that V2GeC is largely isotropic in compression and in shear, and the degree of isotropy decreases with pressure. The Gr黱eisen parameter, the Debye temperature and the thermal expansion coefficient are also successfully obtained for the first time.
Keywords:  V2GeC      first principles      elasticity      thermodynamic properties  
Received:  10 August 2011      Revised:  14 October 2011      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  62.20.D- (Elasticity)  
  65.40.-b (Thermal properties of crystalline solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974139, 10964002 and 11104247), the Natural Science Foundation of Guizhou Province, China (Grant No. [2009]2066), the Project of Aiding Elites’ Research Condition of Guizhou Province, China (Grant No. TZJF-2008-42), and the Science Foundation from Education Ministry of Zhejiang Province, China (Grant No. Y201121807).
Corresponding Authors:  Yang Ze-Jin,yzjscu@163.com     E-mail:  yzjscu@163.com

Cite this article: 

Yang Ze-Jin(杨则金), Guo Yun-Dong(郭云东), Linghu Rong-Feng(令狐荣锋), and Yang Xiang-Dong(杨向东) First-principles calculation of the lattice compressibility, elastic anisotropy and thermodynamic stability of V2GeC 2012 Chin. Phys. B 21 036301

[1] Barsoum M W 2000 Prog. Solid State Chem. 28 201
[2] Gao G Y, Oganov A R, Li P F, Li Z W, Wang H, Cui T, Ma Y M, Bergara A, Lyakhov A O, Litaka T and Zou G T 2010 Proc. Natl. Acad. Sci. USA 107 1317
[3] Lv J, Wang Y C, Zhu L and Ma Y M 2011 Phys. Rev. Lett. 106 015503
[4] Ma Y M, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature 458 182
[5] Barsoum M W and Radovic M 2011 Annu. Rev. Mater. Res. 41 1
[6] Manoun B, Amini S, Gupta S, Saxena S K and Barsoum M W 2007 J. Phys.: Condens. Matter 19 456218
[7] Bouhemadou A 2009 Appl. Phys. A 96 959
[8] Yi J X, Chen P, Li D L, Xiao X B, Zhang W B and Tang B Y 2010 Solid State Commun. 150 49
[9] Hao A M, Zhou T J, Zhu Y, Zhang X Y and Liu R P 2011 Chin. Phys. B 20 047103
[10] Li X F, Zhai H C, Fu H Z, Liu Z L and Ji G F 2011 Chin. Phys. B 20 093101
[11] Lin H and Zeng Z 2011 Chin. Phys. B 20 077102
[12] Liu C M, Ge N N, Fu Z J, Cheng Y and Zhu J 2011 Chin. Phys. B 20 045101
[13] Liu J, Zhan R, Li L and Dong H N 2011 Chin. Phys. B 20 077101
[14] Peng H, Wang C L, Li J C, Zhang R Z, Wang H C and Sun Y 2011 Chin. Phys. B 20 046103
[15] Xu Y J Z, Shang J X and Wang H F 2011 Chin. Phys. B 20 037101
[16] Yu B H and Chen D 2011 Chin. Phys. B 20 030508
[17] Zhang L, Ji G F, Zhao F and Gong Z Z 2011 Chin. Phys. B 20 047102
[18] Zhang Q, Wu X and Qin S 2011 Chin. Phys. B 20 066101
[19] Vanderbilt D 1990 Phys. Rev. B 41 7892
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413
[22] Kulkarni S R, Vennila R S, Phatak N A, Saxena S K, Zhab C S, El-Raghy T, Barsoumd M W, Luoe W and Ahuja R 2008 J. Alloys Comp. 448 L1
[23] Payne M C, Teter M P, Allen D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[24] Milman V, Winkler B, White A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum. Chem. 77 895
[25] Leaffer O D, Gupta S, Barsoum M W and Spanier J E 2007 J. Mater. Res. 22 2651
[26] Barsoum M W, Physical Properties of the MAX Phases, Encyclopedia Mater.: Sci. Technol. (Elservier, Amsterdam, 2006)
[27] Phatak N A, Saxena S K, Fei Y W and Hu J Z 2009 J. Alloys Comp. 475 629
[28] Murnaghan F D 1994 Proc. Natl. Acad. Sci. USA 30 224
[29] Born M 1940 Proc. Cambridge Philos. Soc. 36 160
[30] Islam A K M A, Sikder A S and Islam F N 2006 Phys. Lett. A 350 288
[31] Nye J F 1964 Physical Properties of Crystals (Oxford: Clarendon Press)
[32] Pugh S F 1954 Philos. Mag. 45 833
[33] Blanco M A, Francisco E and Luana V 2004 Comp. Phys. Comm. 158 57
[34] Ravindran P, Fast L, Korzhavyi P A, Johnnsson B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4891
[35] Haines J, Leger J M and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1
[1] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[2] Effect of structural vacancies on lattice vibration, mechanical, electronic, and thermodynamic properties of Cr5BSi3
Tian-Hui Dong(董天慧), Xu-Dong Zhang(张旭东), Lin-Mei Yang(杨林梅), and Feng Wang(王峰). Chin. Phys. B, 2022, 31(2): 026101.
[3] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[4] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[5] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[6] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[7] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[8] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[9] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[10] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[11] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[12] Effect of chemical ordering annealing on superelasticity of Ni-Mn-Ga-Fe ferromagnetic shape memory alloy microwires
Yanfen Liu(刘艳芬), Xuexi Zhang(张学习), Hongxian Shen(沈红先), Jianfei Sun(孙剑飞), Qinan Li(李奇楠), Xiaohua Liu(刘晓华), Jianjun Li(李建军), Weidong Cheng(程伟东). Chin. Phys. B, 2020, 29(5): 056202.
[13] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[14] First principles study of post-boron carbide phases with icosahedra broken
Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超)†, and Tong-Xiang Liang(梁彤祥)‡. Chin. Phys. B, 2020, 29(10): 103102.
[15] First principles study of interactions of oxygen-carbon-vacancy in bcc Fe
Yuan You(由园), Mu-Fu Yan(闫牧夫), Ji-Hong Yan(闫纪红), Gang Sun(孙刚), Chao Wang(王超). Chin. Phys. B, 2019, 28(10): 106102.
No Suggested Reading articles found!