Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087307    DOI: 10.1088/1674-1056/20/8/087307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigation of passivation effects in AlGaN/GaN metal–insulator–semiconductor high electron-mobility transistor by gate–drain conductance dispersion study

Bi Zhi-Wei(毕志伟)a)† , Hu Zhen-Hua(胡振华) b), Mao Wei(毛维)a), Hao Yue(郝跃)a)‡, Feng Qian(冯倩) a), Cao Yan-Rong(曹艳荣)a)c), Gao Zhi-Yuan(高志远)a), Zhang Jin-Cheng(张进成)a), Ma Xiao-Hua(马晓华)a), Chang Yong-Ming(常永明)a), Li Zhi-Ming(李志明) a), and Mei Nan(梅楠)a)
a Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China; b Life Sciences Research Centre, School of Life Sciences and Technology, Xidian University, Xi'an 710071, China; c School of Electronical & Machanical Engineering, Xidian University, Xi’an 710071, China
Abstract  This paper studies the drain current collapse of AlGaN/GaN metal—insulator—semiconductor high electron-mobility transistors (MIS-HEMTs) with NbAlO dielectric by applying dual-pulsed stress to the gate and drain of the device. For NbAlO MIS-HEMT, smaller current collapse is found, especially when the gate static voltage is -8 V. Through a thorough study of the gate—drain conductance dispersion, it is found that the growth of NbAlO can reduce the trap density of the AlGaN surface. Therefore, fewer traps can be filled by gate electrons, and hence the depletion effect in the channel is suppressed effectively. It is proved that the NbAlO gate dielectric can not only decrease gate leakage current but also passivate the AlGaN surface effectively, and weaken the current collapse effect accordingly.
Keywords:  metal—insulator—semiconductor high electron-mobility transistor      GaN      current collapse      passivation  
Received:  04 January 2011      Revised:  09 March 2011      Accepted manuscript online: 
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.Tv (Field effect devices)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: Project supported by the State Key Program and Major Program of the National Natural Science Foundation of China (Grant Nos. 60736033 and 60890191) and the Fundamental Research Funds for the Central Universities (Grant Nos. JY10000925002 and JY10000904009).

Cite this article: 

Bi Zhi-Wei(毕志伟), Hu Zhen-Hua(胡振华), Mao Wei(毛维), Hao Yue(郝跃), Feng Qian(冯倩), Cao Yan-Rong(曹艳荣), Gao Zhi-Yuan(高志远), Zhang Jin-Cheng(张进成), Ma Xiao-Hua(马晓华), Chang Yong-Ming(常永明), Li Zhi-Ming(李志明), and Mei Nan(梅楠) Investigation of passivation effects in AlGaN/GaN metal–insulator–semiconductor high electron-mobility transistor by gate–drain conductance dispersion study 2011 Chin. Phys. B 20 087307

[1] Kumar V, Schwindt W, Lu R and Kuliev R 2002 IEEE Electron Device Lett. 23 455
[2] Kordos P, Heidelberger G, Bernat J, Fox A, Marso M and Luth H 2005 Appl. Phys. Lett. 87 143501
[3] Yue Y Z, Hao Y, Zhang J C, Feng Q, Ni J Y and Ma X H 2008 Chin. Phys. B 17 1405
[4] Feng Q, Tian Y, Bi Z W, Yue Y Z, Ni J Y, Zhang J C, Hao Y and Yang L A 2009 Chin. Phys. B 18 3014
[5] Wang R N, Cai Y, Tang C W, Lau K M and Chen K J 2006 IEEE Electron Device Lett. 27 793
[6] Liu C, Chor E F and Tan L S 2006 Appl. Phys. Lett. 88 173504
[7] Gu W P, Duan H T, Ni J Y, Hao Y, Zhang J C, Feng Q and Ma X H 2009 Chin. Phys. B 18 1601
[8] Yue Y Z, Hao Y, Zhang J C, Ni J Y, Mao W, Feng Q and Liu L J 2008 IEEE Electron Device Lett. 29 838
[9] Bi Z W, Feng Q, Hao Y, Wang D H, Ma X H, Zhang J C, Quan S and Xu S R 2010 Chin. Phys. B 19 077303
[10] Hao Y, Han X W, Zhang J C and Zhang J F 2006 Acta Phys. Sin. 55 3622 (in Chinese)
[11] Wei W, Lin R B, Feng Q and Hao Y 2008 Acta Phys. Sin. 57 467 (in Chinese)
[12] Miller E J, Dang X Z, Wieder H H, Asbeck P M, Yu E T, Sullivan G J and Redwing J M 2000 J. Appl. Phys. 87 8070
[13] Stoklas R, Gregusova D, Novak J, Vescan A and Kordos P 2008 Appl. Phys. Lett. 93 124103
[14] Arulkumaran S, Ng G I and Liu Z H 2007 Appl. Phys. Lett. 90 173504
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[4] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[5] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[9] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[10] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[11] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[12] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[13] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[14] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[15] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
No Suggested Reading articles found!