Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087308    DOI: 10.1088/1674-1056/20/8/087308
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modulation transfer function characteristic of uniform-doping transmission-mode GaAs/GaAlAs photocathode

Ren Ling(任玲) and Chang Ben-Kang(常本康)
Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  The resolution characteristic can be obtained by the modulation transfer function (MTF) of a GaAs/GaAlAs photocathode. After establishing the theoretical model of GaAs(100)-oriented atomic configuration and the formula for the ionized impurity scattering of the non-equilibrium carriers, this paper calculates the trajectories of photoelectrons in a photocathode. Thus the distribution of photoelectron spots on the emit-face is obtained, which is namely the point spread function. The MTF is obtained by Fourier transfer of the line spread function obtained from the point spread function. The MTF obtained from these calculations is shown to depend heavily on the electron diffusion length, and enhanced considerably by decreasing the electron diffusion length and increasing the doping concentration. Furthermore, the resolution is enhanced considerably by increasing the active-layer thickness, especially at high spatial frequencies. The best spatial resolution is 860 lp/mm, for the GaAs photocathode of doping concentration 1 × 1019 cm-3, electron diffusion length 3.6 μm and the active-layer thickness 2 μm, under the 633-nm light irradiated. This research will contribute to the future improvement of the cathode's resolution for preparing a high performance GaAs photocathode, and improve the resolution of a low light level image intensifier.
Keywords:  GaAs/GaAlAs photocathode      uniform-doping      modulation transfer function      spatial resolution  
Received:  24 November 2010      Revised:  01 March 2011      Accepted manuscript online: 
PACS:  73.61.Ey (III-V semiconductors)  
  42.30.Lr (Modulation and optical transfer functions)  
  73.50.-h (Electronic transport phenomena in thin films)  
  79.60.-i (Photoemission and photoelectron spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60678043) and the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions, China (Grant No. CX09B 096Z).

Cite this article: 

Ren Ling(任玲) and Chang Ben-Kang(常本康) Modulation transfer function characteristic of uniform-doping transmission-mode GaAs/GaAlAs photocathode 2011 Chin. Phys. B 20 087308

[1] Zhang Y J, Chang B K, Yang Z, Niu J and Zou J J 2009 Chin. Phys. B 18 4541
[2] Yang Z, Zou J J and Chang B K 2010 Acta Phys. Sin. 59 4290 (in Chinese)
[3] Liu Z, Sun Y, Peterson S and Pianetta P 2008 Appl. Phys. Lett. 92 241107
[4] Zou J J, Chang B K and Yang Z 2007 Acta Phys. Sin. 56 2992 (in Chinese)
[5] Zhou L W, Li Y, Zhang Z Q, Monastyrski M A and Schelev M Y 2005 it Acta Phys. Sin. 54 3591 (in Chinese)
[6] Zhou L W 1993 Electron Optics with Wide Beam Focusing (Beijing: Beijing Institute of Technology Press) p. 96 (in Chinese)
[7] Xiang S M and Ni G Q 1999 The Principle of Photoelectronic Imaging Devices (Beijing: National Defence Industry Press) p. 65 (in Chinese)
[8] Spicer W E and Herrera-Gomez A 1993 Proc. SPIE 18 2022
[9] Zou J J, Chang B K, Yang Z, Zhang Y J and Qiao J L 2009 J. Appl. Phys. 105 013714
[10] Zou J J, Chang B K, Yang Z, Zhang Y J and Qiao J L 2009 Acta Phys. Sin. 58 5842 (in Chinese)
[11] Liu E K, Zhu B S and Luo J S 2009 Physics of Semiconductors 7th edn. (Beijing: Publishing House of Electronics Industry) p. 110 (in Chinese)
[12] Zhu S L 1979 Atomic Physics (Beijing: Higher Education Press) p. 12 (in Chinese)
[13] Gai S Q 1984 Theoretical Foundation of Camera Tube (Beijing: Cambridge University Press) p. 45 (in Chinese)
[1] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[2] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[3] Areal density and spatial resolution of high energy electron radiography
Jiahao Xiao(肖家浩), Zimin Zhang(张子民), Shuchun Cao(曹树春), Ping Yuan(袁平), Xiaokang Shen(申晓康), Rui Cheng(程锐), Quantang Zhao(赵全堂), Yang Zong(宗阳), Ming Liu(刘铭), Xianming Zhou(周贤明), Zhongping Li(李中平), Yongtao Zhao(赵永涛), Chuanxiang Tang(唐传祥), Wenhui Huang(黄文会), Yingchao Du(杜应超), Wei Gai(盖炜). Chin. Phys. B, 2018, 27(3): 035202.
[4] Applications of nanostructures in wide-field, label-free super resolution microscopy
Xiaowei Liu(刘小威), Chao Meng(孟超), Xuechu Xu(徐雪初), Mingwei Tang(汤明炜), Chenlei Pang(庞陈雷), Qing Yang(杨青). Chin. Phys. B, 2018, 27(11): 118704.
[5] Simplified modeling of frequency behavior in photonic crystal vertical cavity surface emitting laser with tunnel injection quantum dot in active region
Mehdi Riahinasab, Vahid Ahmadi, Elham Darabi. Chin. Phys. B, 2017, 26(2): 024211.
[6] Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method
Bao Yuan (鲍园), Wang Yan (王研), Gao Kun (高昆), Wang Zhi-Li (王志立), Zhu Pei-Ping (朱佩平), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2015, 24(10): 108702.
[7] Solving the atmospheric scattering optical transfer function using the multi-coupled single scattering method
Sun Bin (孙斌), Hong Jin (洪津), Sun Xiao-Bing (孙晓兵). Chin. Phys. B, 2014, 23(9): 094201.
No Suggested Reading articles found!