Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087304    DOI: 10.1088/1674-1056/20/8/087304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Trapezoid mesa trench metal–oxide semiconductor barrier Schottky rectifier: an improved Schottky rectifier with better reverse characteristics

Li Wei-Yi(李惟一), Ru Guo-Ping(茹国平), Jiang Yu-Long(蒋玉龙), and Ruan Gang(阮刚)
State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433, China
Abstract  An improved structure of Schottky rectifier, called a trapezoid mesa trench metal—oxide semiconductor (MOS) barrier Schottky rectifier (TM-TMBS), is proposed and studied by two-dimensional numerical simulations. Both forward and especially better reverse IV characteristics, including lower leakage current and higher breakdown voltage, are demonstrated by comparing our proposed TM-TMBS with a regular trench MOS barrier Schottky rectifier (TMBS) as well as a conventional planar Schottky barrier diode rectifier. Optimized device parameters corresponding to the requirement for high breakdown voltage are given. With optimized parameters, TM-TMBS attains a breakdown voltage of 186 V, which is 6.3% larger than that of the optimized TMBS, and a leakage current of 4.3 × 10-6 A/cm2, which is 26% smaller than that of the optimized TMBS. The relationship between optimized breakdown voltage and some device parameters is studied. Explanations and design rules are given according to this relationship.
Keywords:  Schottky rectifier      pinch-off effect      breakdown      power device  
Received:  07 December 2010      Revised:  28 April 2011      Accepted manuscript online: 
PACS:  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.40.Ei (Rectification)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the International Research Training Group “Materials and Concepts for Interconnects and Nanosystems”.

Cite this article: 

Li Wei-Yi(李惟一), Ru Guo-Ping(茹国平), Jiang Yu-Long(蒋玉龙), and Ruan Gang(阮刚) Trapezoid mesa trench metal–oxide semiconductor barrier Schottky rectifier: an improved Schottky rectifier with better reverse characteristics 2011 Chin. Phys. B 20 087304

[1] Baliga B J 1995 Power Semiconductor Devices (Pacific Grove: PWS)
[2] Sze S M and Ng K K 2007 Physics of Semiconductor Devices 3rd edn. (Hoboken: Wiley-Interscience)
[3] Baliga B J 1984 IEEE Electron Device Lett. 5 194
[4] Baliga B J 1985 Solid-State Electronics 28 1089
[5] Song Q W, Zhang Y M, Zhang Y M, Zhang Q and Lü H L 2010 Chin. Phys. B 19 087202
[6] Nan Y G, Pu H B, Cao L and Ren J 2010 Chin. Phys. B 19 107304
[7] Baliga B J 1987 IEEE Electron Device Lett. 8 407
[8] Song Q W, Zhang Y M, Zhang Y M, Zhang Q, Guo H, Li Z Y and Wang Z X 2010 Chin. Phys. B 19 047201
[9] Mehrotra M and Baliga B J 1995 Solid-State Electronics 38 801
[10] Sakai T, Matsumoto S and Yachi T 1998 ISPSD'98: Proceedings of the 10th International Symposium on Power Semiconductor Devices & ICs June 3—6, 1998, Kyoto, Japan p. 293
[11] Mahalingam S and Baliga B J 1999 Solid-State Electronics 43 1
[12] Khemka V, Ananthan V and Chow T P 2000 IEEE Electron Device Lett. 21 286
[13] Shimizu T, Kunori S, Kitada M and Sugai A 2001 ISPSD'01: Proceedings of the 13rd International Symposium on Power Semiconductor Devices & ICs June 4—7, 2001 Osaka, Japan p. 243
[14] Moon J W, Choi Y I and Chung S K 2002 Proceedings of 23rd International Conference on Microelectronics May 12—15, 2002 Nis, Yugoslavia p. 189
[15] Juang M H, Yu J, Hwang C C, Shye D C and Wang J L 2010 Microelectronics Reliability 51 365
[16] Juang M H, Yu J and Jang S L 2010 Current Appl. Phys. 11 698
[17] Schoen K J, Henning J P, Woodall J M, Cooper J A and Melloch M R 1998 IEEE Electron Device Lett. 19 97
[18] Roccaforte F, La Via F, Di Franco S and Raineri V 2002 Appl. Phys. Lett. 81 1125
[19] Roccaforte F, La Via F, La Magna A, Di Franco S and Raineri V 2003 IEEE Transactions on Electron Devices 50 1741
[20] Li W Y, Ru G P, Jiang Y L and Ruan G 2010 ICSICT'10: Proceedings of the 10th International Conference on Solid-State and Integrated Circuit Technology November 1—4, p. 1789
[21] Thapar N and Baliga B J 1997 Solid-State Electronics 41 1929
[22] Crosslight Device Simulation Software—-General Manual 2010.07 Crosslight Software Inc. Burnaby
[23] Carlile R N, Liang V C, Palusinski O A and Smadi M M 1988 J. Electrochem. Soc. 135 2058
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[3] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[4] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[5] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[6] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[7] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[8] Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy
Yu-Hua Hang(杭玉桦), Yan Qiu(邱岩), Ying Zhou(周颖), Tao Liu(刘韬), Bin Zhu(朱斌), Kaixing Liao(廖开星), Ming-Xin Shi(时铭鑫), and Fei Xue(薛飞). Chin. Phys. B, 2022, 31(2): 024212.
[9] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[10] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[11] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[12] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[13] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[14] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[15] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
No Suggested Reading articles found!