Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 105201    DOI: 10.1088/1674-1056/ac6864
Special Issue: SPECIAL TOPIC — Celebrating the 70th Anniversary of the Physics of Jilin University
SPECIAL TOPIC—Celebrating the 70th Anniversary of the Physics of Jilin University Prev   Next  

Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures

Yitong Liu(刘奕彤)1, Qiuyun Wang(王秋云)1, Luyun Jiang(蒋陆昀)2, Anmin Chen(陈安民)1,†, Jianhui Han(韩建慧)2,‡, and Mingxing Jin(金明星)1,§
1. Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2. State Key Laboratory of Laser Propulsion & Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
Abstract  Laser-induced breakdown spectroscopy (LIBS) is a good technique for detecting and analyzing material elements due to the plasma emission produced by the high-power laser pulse. Currently, a significant topic of LIBS research is improving the emission intensity of LIBS. This study investigated the effect of laser-polarization on femtosecond laser-ablated Cu plasma spectra at different sample temperatures. The measured lines under circularly polarized lasers were higher than those under linearly and elliptically polarized lasers. The enhancement effect was evident at higher Cu temperatures when comparing the plasma spectra that have circular and linear polarizations for different target temperatures. To understand the influence of laser-polarization and sample temperature on signal intensity, we calculated the plasma temperature (PT) and electron density (ED) . The change in PT and ED was consistent with the change in the atomic lines as the laser polarization was being adjusted. When raising the Cu temperature, the PT increased while the ED decreased. Raising the Cu temperature whilst adjusting the laser-polarization is effective for improving the signal of femtosecond LIBS compared to raising the initial sample temperature alone or only changing the laser polarization.
Keywords:  laser-induced breakdown spectroscopy      femtosecond pulse      laser-polarization      target temperature      plasma temperature      electron density  
Received:  02 March 2022      Revised:  04 April 2022      Accepted manuscript online: 
PACS:  52.50.Lp (Plasma production and heating by shock waves and compression)  
  52.38.Mf (Laser ablation)  
  32.30.Jc (Visible and ultraviolet spectra)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307701) and the National Natural Science Foundation of China (Grant Nos. 11974138, 11674128, and 11674124).
Corresponding Authors:  Anmin Chen, Jianhui Han, Mingxing Jin     E-mail:  amchen@jlu.edu.cn;hanjh17@mails.jlu.edu.cn;mxjin@jlu.edu.cn

Cite this article: 

Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星) Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures 2022 Chin. Phys. B 31 105201

[1] Wang Q Q, Liu K, Zhao H, Ge C H and Huang Z W 2012 Front. Phys. 7 701
[2] Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y and Jin M 2016 J. Anal. Atom. Spectrom. 31 497
[3] Wang X, Song X, Gao X and Lin J 2020 Opt. Commun. 456 124603
[4] Finney L A, Lin J, Skrodzki P J, Burger M, Nees J, Krushelnick K and Jovanovic I 2021 Opt. Commun. 490 126902
[5] Yang H X, Fu H B, Wang H D, Jia J W, Sigrist M W and Dong F Z 2016 Chin. Phys. B 25 065201
[6] Nakimana A, Tao H Y, Hao Z Q, Sun C K, Gao X and Lin J Q 2013 Chin. Phys. B 22 014209
[7] Liu J, Tao H Y, Gao X, Hao Z Q and Lin J Q 2013 Chin. Phys. B 22 044206
[8] Dong P K, Zhao S Y, Zheng K X, Wang J, Gao X, Hao Z Q and Lin J Q 2021 Acta Phys. Sin. 70 040201 (in Chinese)
[9] Zheng P C, Li X J, Wang J M, Zheng S and Zhao H D 2019 Acta Phys. Sin. 68 125202 (in Chinese)
[10] Guo L B, Zhang B Y, He X N, Li C M, Zhou Y S, Wu T, Park J B, Zeng X Y and Lu Y F 2012 Opt. Exp. 20 1436
[11] Chen A, Wang Y, Sui L, Li S, Li S, Liu D, Jiang Y and Jin M 2015 Opt. Exp. 23 24648
[12] Zhang D, Chen A, Wang X, Li S, Wang Y, Sui L, Jiang Y and Jin M 2017 Opt. Laser Technol. 96 117
[13] Li X, Wang Z, Mao X and Russo R E 2014 J. Anal. Atom. Spectrom. 29 2127
[14] Li K, Zhou W, Shen Q, Ren Z and Peng B 2010 J. Anal. Atom. Spectrom. 25 1475
[15] Hou Z, Wang Z, Liu J, Ni W and Li Z 2014 Opt. Exp. 22 12909
[16] He X, Chen B, Chen Y, Li R and Wang F 2018 J. Anal. Atom. Spectrom. 33 2203
[17] Li C, Hao Z, Zou Z, Zhou R, Li J, Guo L, Li X, Lu Y and Zeng X 2016 Opt. Exp. 24 7850
[18] Goueguel C, Laville S, Vidal F, Sabsabi M and Chaker M 2010 J. Anal. Atom. Spectrom. 25 635
[19] Wang X Z, Hao Z Q, Guo L B, Li X Y, Lu Y F and Zeng X Y 2015 Spectroscopy & Spectral Analysis 35 1159
[20] Wang Y, Wang Q, Chen A and Jin M 2021 Optik 230 166338
[21] Lednev V N, Grishin M Y, Sdvizhenskii P A, Asyutin R D, Tretyakov R S, Stavertiy A Y and Pershin S M 2019 J. Anal. Atom. Spectrom. 34 607
[22] Darbani S M R, Ghezelbash M, Majd A E, Soltanolkotabi M and Saghafifar H 2014 J. Eur. Opt. Soc. 9 14058
[23] Tavassoli S H and Gragossian A 2009 Opt. Laser Technol. 41 481
[24] Liu Y, Tong Y, Li S, Wang Y, Chen A and Jin M 2016 Chin. Opt. Lett. 14 123001
[25] Wang Q, Chen A, Qi H, Li S, Jiang Y and Jin M 2020 Opt. Laser Technol. 121 105773
[26] Chen H, Li H, Sun Y C, Wang Y and Lü P J 2016 Sci. Rep. 6 20950
[27] Chen A, Sui L, Shi Y, Jiang Y, Yang D, Liu H, Jin M and Ding D 2013 Thin Solid Films 529 209
[28] Mirza I, Bulgakova N M, Tomáštík J, Michálek V, Haderka O, Fekete L and Mocek T 2016 Sci. Rep. 6 39133
[29] Han Z H, Zhou C H, Dai E W and Xie J 2008 Opt. Commun. 281 4723
[30] Yao S, Zhang J, Gao X, Zhao S and Lin J 2018 Opt. Commun. 425 152
[31] Wang Y, Chen A, Jiang Y, Sui L, Wang X, Zhang D, Tian D, Li S and Jin M 2017 Phys. Plasmas 24 013301
[32] Wang Q, Chen A, Xu W, Li S, Jiang Y and Jin M 2019 J. Anal. Atom. Spectrom. 34 1242
[33] Lemos N, Grismayer T, Cardoso L, Geada J, Figueira G and Dias J M 2013 Phys. Plasmas 20 103109
[34] Mitryukovskiy S, Liu Y, Ding P, Houard A, Couairon A and Mysyrowicz A 2015 Phys. Rev. Lett. 114 063003
[35] Corkum P B, Burnett N H and Brunel F 1989 Phys. Rev. Lett. 62 1259
[36] Mohideen U, Sher M H, Tom H W K, Aumiller G D, Wood O R, Freeman R R, Boker J and Bucksbaum P H 1993 Phys. Rev. Lett. 71 509
[37] Guo J, Wang T, Shao J, Chen A and Jin M 2018 J. Anal. Atom. Spectrom. 33 2116
[38] Thorstensen J and Erik Foss S 2012 J. Appl. Phys. 112 103514
[39] Yang L, Liu M, Liu Y T, Li Q X, Li S Y, Jiang Y F, Chen A M and Jin M X 2020 Chin. Phys. B 29 065203
[40] Wang Q, Chen A, Wang Y, Sui L, Li S and Jin M 2018 J. Anal. Atom. Spectrom. 33 1154
[41] Chen A, Jiang Y, Wang T, Shao J and Jin M 2015 Phys. Plasmas 22 033301
[42] Yang X, Li S, Jiang Y, Chen A and Jin M 2019 Acta Phys. Sin. 68 065201 (in Chinese)
[43] Yang D P, Li S Y, Jiang Y F, Chen A M and Jin M X 2017 Acta Phys. Sin. 66 115201 (in Chinese)
[44] Wang Y, Chen A, Zhang D, Wang Q, Li S, Jiang Y and Jin M 2020 Phys. Plasmas 27 023507
[45] Xu W, Chen A, Wang Q, Zhang D, Wang Y, Li S, Jiang Y and Jin M 2019 J. Anal. Atom. Spectrom. 34 1018
[46] Wang Y, Chen A, Wang Q, Sui L, Ke D, Cao S, Li S, Jiang Y and Jin M 2018 Phys. Plasmas 25 033302
[47] Shao J, Guo J, Wang Q, Chen A and Jin M 2020 Plasma Sci. Technol. 22 074001
[48] Shakeel H, Arshad S, Haq S U and Nadeem A 2016 Phys. Plasmas 23 053504
[49] Konjević N and Wiese W L 1990 J. Phys. Chem. Ref. Data 19 1307
[50] Qi H, Li S, Qi Y, Chen A, Hu Z, Huang X, Jin M and Ding D 2014 J. Anal. Atom. Spectrom. 29 1105
[51] Thorstensen J and Foss S E 2012 J. Appl. Phys. 112 103514
[52] Ujihara K 1972 J. Appl. Phys. 43 2376
[53] Eschlböck-Fuchs S, Haslinger M J, Hinterreiter A, Kolmhofer P, Huber N, Rössler R, Heitz J and Pedarnig J D 2013 Spectrochimica Acta Part B: Atomic Spectroscopy 87 36
[54] Sambri A, Amoruso S, Wang X, Radovic' M, Miletto Granozio F and Bruzzese R 2007 Appl. Phys. Lett. 91 151501
[55] Zhang D, Chen A, Wang Q, Wang Y, Qi H, Li S, Jiang Y and Jin M 2018 Phys. Plasmas 25 083305
[1] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[2] Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy
Yu-Hua Hang(杭玉桦), Yan Qiu(邱岩), Ying Zhou(周颖), Tao Liu(刘韬), Bin Zhu(朱斌), Kaixing Liao(廖开星), Ming-Xin Shi(时铭鑫), and Fei Xue(薛飞). Chin. Phys. B, 2022, 31(2): 024212.
[3] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[4] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[5] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[6] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[7] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[8] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[9] Interaction of supersonic molecular beam with low-temperature plasma
Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋). Chin. Phys. B, 2020, 29(6): 065208.
[10] Temporal and spatial evolution of air-spark switch plasmainvestigated by the Mach-Zehnder interferometer
Jie Huang(黄杰), Lin Yang(杨林), Hongchao Zhang(张宏超), Lei Chen(陈磊), Xianying Wu(吴先映). Chin. Phys. B, 2019, 28(5): 055202.
[11] Femtosecond Tm-Ho co-doped fiber laser using a bulk-structured Bi2Se3 topological insulator
Jinho Lee(李珍昊), Ju Han Lee(李周翰). Chin. Phys. B, 2018, 27(9): 094219.
[12] Simulating resonance-mediated two-photon absorption enhancement in rare-earth ions by a rectangle phase modulation
Da-Long Qi(齐大龙), Ye Zheng(郑烨), Wen-Jing Cheng(程文静), Yun-Hua Yao(姚云华), Lian-Zhong Deng(邓联忠), Dong-Hai Feng(冯东海), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(1): 013202.
[13] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[14] High-energy femtosecond Yb-doped all-fiber monolithic chirped-pulse amplifier at repetition rate of 1 MHz
Zhi-Guo Lv(吕志国), Hao Teng(滕浩), Li-Na Wang(王立娜), Jun-Li Wang(王军利), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(9): 094208.
[15] Laser-induced breakdown spectroscopy applied to the characterization of rock by support vector machine combined with principal component analysis
Hong-Xing Yang(杨洪星), Hong-Bo Fu(付洪波), Hua-Dong Wang(王华东), Jun-Wei Jia(贾军伟), Markus W Sigrist, Feng-Zhong Dong(董凤忠). Chin. Phys. B, 2016, 25(6): 065201.
No Suggested Reading articles found!