Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087303    DOI: 10.1088/1674-1056/20/8/087303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dependence of the electrical properties of defective single-walled carbon nanotubes on the vacancy density

Luo Yu-Pin(罗煜聘)a), Tien Li-Gan(田力耕)b), Tsai Chuen-Horng(蔡春鸿)b), Lee Ming-Hsien(李明宪)c), and Li Feng-Yin(李丰颖)d)
a Department of Electronic Engineering, National Formosa University, Yunlin County, Taiwan 632, China; b Department of Engineering and System Science, National Tsing Hua University, Hsin Chu, Taiwan 300, China; c Department of Physics, Tamkang University, Tamsui, Taipei County, Taiwan 251, China; d Department of Chemistry, National Chung Hsing University, Taichung, Taiwan 420, China
Abstract  The relationship between the electric properties and the vacancy density in single-walled carbon nanotubes has been investigated from first principles as well as the dependence of the influencing range of a vacancy in the nanotube on the nanotube chirality. Compared with the long-range interaction of the vacancies in a single-walled carbon nanotube with non-zero chiral angle, a much shorter interaction was found between vacancies in a zigzag single-walled carbon nanotube. In this study, we investigated the bandstructure fluctuations caused by the nanotube strain, which depends on both the vacancy density and the tube chirality. These theoretical results provide new insight to understand the relationship between the local deformation of a defective single-walled carbon nanotube and its measurable electronic properties.
Keywords:  chiral carbon nanotube      mono-vacancy defect      energy gap  
Received:  29 November 2010      Revised:  12 January 2011      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.63.Fg (Nanotubes)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  

Cite this article: 

Luo Yu-Pin(罗煜聘), Tien Li-Gan(田力耕), Tsai Chuen-Horng(蔡春鸿), Lee Ming-Hsien(李明宪), and Li Feng-Yin(李丰颖) Dependence of the electrical properties of defective single-walled carbon nanotubes on the vacancy density 2011 Chin. Phys. B 20 087303

[1] Tans S J, Verschueren A R M and Dekker C 1998 Nature (London) 393 49
[2] Fan Y, Goldsmith B R and Collins P G 2005 Nature Mater. 4 906
[3] Tien L G, Tsai C H, Li F Y and Lee M H 2005 Phys. Rev. B 72 245417
[4] Gomez-Navarro C, De Pablo P J, Gomez-Herrero J, Biel B, Garcia-Vidal F J, Rubio A and Flores F 2005 Nature Mater. 4 534
[5] Neophytou N, Kienle D, Polizzi E and Anantram M P 2006 Appl. Phys. Lett. 88 242106
[6] Biel B, Garcia-Vidal F J, Rubio A and Flores F 2005 Phys. Rev. Lett. 95 266801
[7] Kim G, Jeong B W and Ihm J 2006 Appl. Phys. Lett. 88 193107
[8] Lee S, Kim G, Kim H, Choi B Y, Lee J, Jeong B W, Ihm J, Kuk Y and Kahng S J 2005 Phys. Rev. Lett. 95 166402
[9] Milkie D E, Staii C, Paulson S, Hindman E, Johnson A and Kikkawa J M 2005 Nano Lett. 5 1135
[10] Baskin E, Reznik A, Saada D, Adler J and Kalish R 2001 Phys. Rev. B 64 224110
[11] Payne M C, Teter M P, Allan D C, Arias D C and Johannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[12] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[13] White J A and Bird D M 1994 Phys. Rev. B 50 4954
[14] Vanderbilt D 1990 Phys. Rev. B 41 7892
[15] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[16] Lu A J and Pan B C 2004 Phys. Rev. Lett. 92 105504
[17] Kotakoski J, Krasheninnikov A V and Nordlund K 2006 Phys. Rev. B 74 245420
[1] Nitrogen-tailored quasiparticle energy gaps of polyynes
Kan Zhang(张侃), Jiling Li(李继玲), Peitao Liu(刘培涛), Guowei Yang(杨国伟), and Lei Shi(石磊). Chin. Phys. B, 2022, 31(12): 123102.
[2] Two-dimensional topological insulators with large bulk energy gap
Z Q Yang(杨中强), Jin-Feng Jia(贾金锋), Dong Qian(钱冬). Chin. Phys. B, 2016, 25(11): 117312.
[3] Energy gap suppression and excess current in Tl2Ba2CaCu2O8 intrinsic Josephson junctions
Wang Pei (王培), Xie Wei (解伟), Hu Lei (胡磊), Liu Xin (刘欣), Zhao Xin-Jie (赵新杰), He Ming (何明), Ji Lu (季鲁), Zhang Xu (张旭), Yan Shao-Lin (阎少林). Chin. Phys. B, 2013, 22(5): 057402.
[4] Flux qubit with a large loop size and tunable Josephson junctions
Deng Hui(邓辉), Yu Hai-Feng(于海峰), Xue Guang-Ming(薛光明), Tian Ye(田野), Ren Jian-Kun(任建坤), Wu Yu-Lin(吴玉林), Huang Ke-Qiang(黄克强), Zhao Shi-Ping(赵士平), and Zheng Dong-Ning(郑东宁) . Chin. Phys. B, 2012, 21(4): 040307.
[5] Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film
Zhang Qi-Xian(章启贤), Wei Wen-Sheng(魏文生), and Ruan Fang-Ping(阮方平) . Chin. Phys. B, 2011, 20(4): 047802.
[6] Boron/nitrogen pairs Co-doping in metallic carbon nanotubes: a first-principle study
Ouyang Fang-Ping(欧阳方平), Peng Sheng-Lin(彭盛霖), Chen Ling-Na(陈灵娜), Sun Shu-Yuan(孙曙元), and Xu Hui(徐慧). Chin. Phys. B, 2011, 20(2): 027102.
[7] First-principles study of metallic carbon nanotubes with boron/nitrogen co-doping
Chen Ling-Na(陈灵娜), Ma Song-Shan(马松山), OuYang Fang-Ping(欧阳芳平), Xiao Jin(肖金), and Xu Hui(徐慧). Chin. Phys. B, 2011, 20(1): 017103.
[8] Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field
Luo Yu-Pin(罗煜聘), Tien Li-Gan(田力耕), Tsai Chuen-Horng(蔡春鸿), Lee Ming-Hsien(李明宪), and Li Feng-Yin(李丰颖). Chin. Phys. B, 2011, 20(1): 017302.
[9] First-principles study of structures and electronic properties of cadmium sulfide clusters
Chu He-Ying(楚合营), Liu Zhao-Xia(刘朝霞), Qiu Guo-Li(邱国莉), Kong De-Guo(孔德国), Wu Si-Xin(武四新), Li Yun-Cai (李蕴才), and Du Zu-Liang(杜祖亮). Chin. Phys. B, 2008, 17(7): 2478-2483.
[10] Magnon energy gap in a four-layer ferromagnetic superlattice
Qiu Rong-Ke(邱荣科), Song Pan-Pan(宋攀攀), Zhang Zhi-Dong(张志东), and Guo Lian-Quan(郭连权). Chin. Phys. B, 2008, 17(10): 3894-3901.
No Suggested Reading articles found!