Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 077101    DOI: 10.1088/1674-1056/20/7/077101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic properties of several potential rocksalt half-metallic ferromagnets based on the first-principles calculations

Liu Jun(刘俊)a)† , Zhan Rui(詹瑞) b), Li Li(李丽)a), and Dong Hui-Ning(董会宁)a)
a College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; b College of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract  Several rocksalt Sr4X3N (X=O, S, Se, and Te) are predicted to be potential half-metallic ferromagnets free of transition-metal and rare-earth elements by performing the first-principles calculations. Then their magnetic properties, such as the half metallicity and the crystal-cell magnetic moments are investigated. The Sr4X3N possibly have higher Curie temperatures and have more stable half metallicity than the Sr4X3C. Their crystal-cell magnetic moments are all 1.00 μB. The crystal-cell magnetic moments and the half metallicity arise mainly from the N ions. The main mechanism is the strong covalent interaction leading to the sp2 hybridized orbitals in the Sr4X3N. Then two Sr-5s and three N-2p electrons enter into three sp2 hybridized orbitals. Among these five electrons, four electrons are paired and one is unpaired, so there are three spin-up electrons and two spin-down electrons in these sp2 hybridized orbitals.
Keywords:  half-metallic ferromagnets      first-principles calculations      crystal-cell magnetic moments  
Received:  04 January 2011      Revised:  28 March 2011      Accepted manuscript online: 
PACS:  71.15.-m (Methods of electronic structure calculations)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  

Cite this article: 

Liu Jun(刘俊), Zhan Rui(詹瑞), Li Li(李丽), and Dong Hui-Ning(董会宁) Magnetic properties of several potential rocksalt half-metallic ferromagnets based on the first-principles calculations 2011 Chin. Phys. B 20 077101

[1] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[2] van Leuken H and de Groot R A 1995 Phys. Rev. Lett. 74 1171
[3] Xie W H and Liu B G 2004 J. Appl. Phys. 96 3559
[4] Liu J, Chen L, Dong J, Li L, Dong H N and Zheng R L 2010 Chin. Phys. B 19 0871010
[5] Mathieu R, Akahoshi D, Asamitsu A, Tomioka Y and Tokura Y 2004 Phys. Rev. Lett. 93 227202
[6] Aziz A, Wessely O P, Ali M, Edwards D M, Marrows C H, Hickey B J and Blamire M G 2009 Phys. Rev. Lett. 103 237203
[7] Miao G X, Müller M and Moodera J S 2009 Phys. Rev. Lett. 102 076601
[8] Cibert J, Bobo J F and Luders U 2005 Comp. Rend. Phys. 6 977
[9] Asano Y, Tanaka Y and Golubov A A 2007 Phys. Rev. Lett. 98 07002
[10] Wan X G, Kohno M and Hu X 2005 Phys. Rev. Lett. 95 14660
[11] Wang Y H A, Gupta A, Chshiev M and Butler W H 2008 Appl. Phys. Lett. 92 062507
[12] Liu J, Chen L, Liu Y, Dong H N and Zheng R L 2010 Chin. Phys. B 19 037103
[13] Maslyuk V V and Bagrets A 2006 Phys. Rev. Lett. 97 097201
[14] Burgers W G 1993 Z. Phys 80 352
[15] Syassen K 1985 Phys. Status Solidi A 91 11
[16] Slattery M K 1925 Phys. Rev. 25 333
[17] Zimmer H G, Winzen H and Syassen K 1985 Phys. Rev. B 32 4066
[18] Labidia S, Meradjia H, Labidia M, Ghemida S, Drabliaa S and El Haj Hassanb F 2009 Physics Procedia 2 1205
[19] Vispute R D, Talyansky V and Choopun S 1998 Appl. Phys. Lett. 73 348
[20] Schmid S and Schnick W 2002 Z. Anorg. Allg. Chem. 628 1192
[21] Schmid S, Senker J and Schnick W 2003 J. Solid State Chem. 174 221
[22] Fawcett I D, Ramanujachary K V and Greenblatt M 1997 Mater. Res. Bull. 32 1565
[23] Liu J, Chen L, Dong H N and Zheng R L 2009 Appl. Phys. Lett. 95 132502
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!