Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 067502    DOI: 10.1088/1674-1056/20/6/067502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hydrogenation, structure and magnetic properties of La(Fe0.91Si0.09)13 hydrides and deuterides

Wang Zhi-Cui(王志翠)a), He Lun-Hua(何伦华)a), F. Cuevasb), M. Latrocheb), Shen Jun(沈俊)c), and Wang Fang-Wei(王芳卫) a)†
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; b Chimie Metallurgique des Terres Rares, ICMPE-CNRS UMR 7182, 2-8 rue Henri Dunant, 94320 Thiais, France; c Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Hydrogenation, crystal structure and magnetic properties of La(Fe0.91Si0.09)13H(D)y have been studied by pressure-composition isotherms (PCI), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and magnetization measurements. The maximum absorption capacity is found to be 1.9 H(D) atoms per formula unit as a solid solution. All hydrides and deuterides crystallize in the NaZn13-type cubic structure with the lattice parameter increasing linearly with H(D) concentration. The H(D) absorption enhances the Curie temperature significantly. The magnetic entropy change of the highly H-absorbed compound La(Fe0.91Si0.09)13H1.81 reaches ~26 J/kg·K under a magnetic field change of 5 T near the Curie temperature TC=350 K. No observable isotope effect seems to imply that only the magnetovolume effect is responsible for the strong interplay between magnetism and lattice.
Keywords:  magnetocaloric effect      magnetic entropy change      isotope effect  
Received:  24 January 2011      Revised:  10 March 2011      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  65.40.gd (Entropy)  
  67.63.Cd (Molecular hydrogen and isotopes)  
Fund: Project supported by the National Basic Research Program of China (973 Program) (Grant No. 2010CB833102), the Knowl- edge Innovation Project of the Chinese Academy of Sciences, and the National Natural Science Foundation of China (Grant Nos. 10974244 and 11004204).

Cite this article: 

Wang Zhi-Cui(王志翠), He Lun-Hua(何伦华), F. Cuevas, M. Latroche, Shen Jun(沈俊), and Wang Fang-Wei(王芳卫) Hydrogenation, structure and magnetic properties of La(Fe0.91Si0.09)13 hydrides and deuterides 2011 Chin. Phys. B 20 067502

[1] Tishin A M 1999 Handbook of Magnetic Materials ed. Buschow K H J (Amsterdam: Elsevier) p. 395
[2] Pecharcky V K and Gschneidner Jr K A 1999 J. Magn. Magn. Mater. 200 44
[3] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[4] Hu F X, Shen B G, Sun J R and Zhang X X 2000 Chin. Phys. 9 550
[5] Hu F X, Qian X L, Wang G J, Sun J R, Shen B G, Cheng Z H and Gao J 2005 Chin. Phys. 14 2329
[6] Fu B, Long Y, Shi P J, Ma T, Bao B, Yan A R and Chen R J 2009 Chin. Phys. B 18 4506
[7] Hu F X, Shen B G, Sun J R and Cheng Z H 2001 Appl. Phys. Lett. 78 3675
[8] Hu F X, Shen B G, Sun J R, Wang G J and Cheng Z H 2002 Appl. Phys. Lett. 80 826
[9] Fujita A, Fujieda S, Hasegawa Y and Fukamichi K 2003 Phys. Rev. B 67 104416
[10] Chen Y F, Wang F, Shen B G, Hu F X, Sun J R, Wang G J and Cheng Z H 2003 J. Phys.: Condens. Matter 15 L161
[11] Wang F W, Wang G J, Hu F X, Kurbakov A, Shen B G and Cheng Z H 2003 J. Phys.: Condens. Matter 15 5269
[12] Jia L, Sun J R, Wang F W, Zhao T Y, Zhang H W, Shen B G, Li D X, Nimori S, Ren Y and Zeng Q S 2008 Appl. Phys. Lett. 92 101904
[13] Liu X B, Liu X D and Altounian Z 2005 J. Appl. Phys. 98 113904
[14] Paul-Boncour V, Guillot M, Wiesinger G and Andre G 2005 Phys. Rev. B 72 174430
[15] Shen J, Li Y X, Sun J R and Shen B G 2009 Chin. Phys. B 18 2058
[16] Wang F, Wang G J, Sun J R and Shen B G 2008 Chin. Phys. B 17 3087
[17] Sun J R, Hu F X and Shen B G 2000 Phys. Rev. Lett. 85 4191
[18] Zhang H W, Shen J, Dong Q Y, Zhao T Y, Li Y X, Sun J R and Shen B G 2008 J. Magn. Magn. Mater. 320 1879
[1] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[12] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[13] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[14] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[15] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
No Suggested Reading articles found!