Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 067501    DOI: 10.1088/1674-1056/20/6/067501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Glassy behaviour of random field Ising spins on Bethe lattice in external magnetic field

Khalid Bannoraa), Galal Ismaila)†, and Wafaa Hassanb)
a Mathematics Department, Faculty of Science, Zagazig University, Zagazig, Egypt; b  Mathematics and Physics Department, Faculty of Engineering, Port Said Branch of Suez, Canal University, Port Said, Egypt
Abstract  The thermodynamics and the phase diagram of random field Ising model (RFIM) on Bethe lattice are  studied by using a replica trick. This lattice is placed in an external magnetic field ($B$). A Gaussian  distribution of random field $( {h_{\rm i} } )$ with zero mean and variance $\langle {{h}_{\rm i}^{\rm 2} }  \rangle = { H}_{{\rm RF}}^{\rm 2} $ is considered. The free-energy ($F$), the magnetization ($M$) and the  order parameter ($q$) are investigated for several values of coordination number ($z$). The phase diagram shows several interesting behaviours and presents tricritical point at critical temperature $T_{\rm C} = J /  k$ and when $H_{\rm RF} = 0$ for finite $z$. The free-energy ($F$) values increase as $T$ increases for  different intensities of random field ($H_{\rm RF} $) and finite $z$. The internal energy ($U$) has a similar  behaviour to that obtained from the Monte Carlo simulations. The ground state of magnetization decreases as  the intensity of random field $H_{\rm RF} $ increases. The ferromagnetic (FM)--paramagnetic (PM) phase boundary is clearly observed only when $z \to \infty $. While FM--PM-spin glass (SG) phase boundaries are  present for finite $z$. The magnetic susceptibility ($\chi $) shows a sharp cusp at $T_{\rm C} $ in a small  random field for finite $z$ and rounded different peaks on increasing $H_{\rm RF}$.
Keywords:  random field      replica trick      coordination number      order parameter      susceptibility and phase diagram  
Received:  25 September 2010      Revised:  25 December 2010      Accepted manuscript online: 
PACS:  75.10.Nr (Spin-glass and other random models)  
  75.40.B  
  76.20.+q (General theory of resonances and relaxations)  

Cite this article: 

Khalid Bannora, Galal Ismail, and Wafaa Hassan Glassy behaviour of random field Ising spins on Bethe lattice in external magnetic field 2011 Chin. Phys. B 20 067501

[1] Edwards S F and Anderson P W 1975 J. Phys. F 5 965
[2] Toulouse G 1977 Comm. Phys. 2 115
[3] Sherrington D and Kirkpatrick S 1975 Phys. Rev. Lett. 35 1792
[4] Parisi G 1979 Phys. Lett. A 73 205
[5] Parisi G 1979 Phys. Rev. Lett. 43 1754
[6] Parisi G 1980 J. Phys. A: Math. Gen. 13 L115, 1101, 1807
[7] Nattermann T 1997 in Spin Glasses and Random Fields ed. Young A P (Singapore: World Scientific)
[8] Mezard M and Young A P 1992 Europhys. Lett. 18 632
[9] Montenegro F C, King A R, Jaccarino V, Han J C and Belanger D P 1991 Phys. Rev. B 44 2155
[10] Efors A L and Shklovskii B L 1975 J. Phys. C 8 L49
[11] Pastor A A and Dobrosavljevic V 1999 Phys. Rev. Lett. 83 4642
[12] Bray A J 1974 Phys. Rev. Lett. 32 1413
[13] Lancaster D, Marinari E and Parisi G 1995 J. Phys. A: Math. Gen. 28 3359
[14] Mezard M and Monasson R 1994 Phys. Rev. B 50 7199
[15] De Dominicis C, Orland H and Temesvari T 1995 J. Phys. I France 5 987
[16] Pastor A A, Dobrosavljevic V and Horbach M L 2002 Phys. Rev. B 66 014413
[17] Machta J, Newman M E J and Chayes L B 2000 Phys. Rev. E 62 8732
[18] Sourlas N 1999 Comput. Phys. Commun. 122 183
[19] Hartmann A K and Young A P 2001 Phys. Rev. B 64 214419
[20] Itakura M 2001 Phys. Rev. B 63 104427
[21] da Silva-Neto O D 1999 D. Sc. Thesis, Universidade Federal de Pernambuco
[22] Ismail G 2003 Rev. Mex. Fis. 49 194
[23] Yoshino H and Rizzo T 2008 Phys. Rev. B 77 104429
[24] Belanger D P 1992 Phys. Rev. B 46 2926
[25] Nattermann T 1990 Phys. Rev. Lett. 64 2454
[26] Mezard M, Parisi G and Virasoro M A 1986 Spin Glass Theory and Beyond (Singapore: World Scientific)
[27] de Dominicis C and Kondor I 1982 Phys. Rev. 27 606
[28] Bethe H A 1935 Proc. R. Soc. London Ser. A 150 552
[29] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[30] Pastor A A, Dobrosavljevic V and Horbach M L 2002 Phys. Rev. B 66 014413
[31] Bruinsma R 1984 Phys. Rev. B 30 289
[32] Claudio Harttztein and Ora Entin-Wohlman 1985 Phys. Rev. B 32 491
[33] Tommaso Castelliani, Florent Krzakala and Federico-Tersenghi 2005 Eur. Phys. J. B 47 99
[34] Liers F, Palassi M, Hartmann A K and Juenger M 2003 Phys. Rev. B 68 094406
[35] Borges H E and Silva P R 1987 Physica A 144
[36] Xie Z W and Liu W M 2004 Phys. Rev. A 70 045602
[37] van Oosten D, van der Straten P and Stoof H T C 2001 Phys. Rev. A 63 053601
[38] Ji A C, Xie X C and Liu W M 2007 Phys. Rev. Lett. 99 183602
[39] Liu W M, Wu B, Zhou X , Campbell D K, Chui S T and Niu Q 2002 Phys. Rev. B 65 172416
[40] Parisi G and Tria F 2002 Eur. Phys. J. B 30 533
[41] Sherrington D and Kirkpatrick S 1978 Phys. Rev. B 11 17
[42] Bannora K, Ismail G and Hassan W 2010 Chin. Phys. B 19 107501
[43] Ismail G 1997 Phys. Stat. Sol. (b) 201 277
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[3] Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain
Hong Fan(范虹), Yiman Sun(孙一曼), Xiaojuan Zhang(张效娟), Chengcheng Zhang(张程程), Xiangjun Li(李向军), and Yi Wang(王乙). Chin. Phys. B, 2021, 30(7): 078703.
[4] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[5] Glassy phase and thermodynamics for random field Ising model on spherical lattice in magnetic field
Khalid Bannora, Galal Ismail, and Wafaa Hassan. Chin. Phys. B, 2010, 19(10): 107501.
[6] A novel approach to topological defects in a vector order parameter system
Ren Ji-Rong(任继荣), Rong Shu-Jun(戎树军), and Zhu Tao(朱涛). Chin. Phys. B, 2009, 18(7): 2901-2904.
[7] Order parameters and synchronization of FitzHugh—Nagumo small-world networks
Li Yan-Long(李延龙), Ma Jun(马军),, Zhang Wei(张巍),, and Liu Yan-Jun(刘延君). Chin. Phys. B, 2009, 18(10): 4598-4602.
[8] Temperature dependence of ratio between dielectric anisotropy and order parameter in fluorinated nematic liquid crystals
Ma Heng(马恒), Sun Rui-Zhi(孙瑞芝), Li Zhen-Xin(李振新), and Liu Yu-Fang(刘玉芳). Chin. Phys. B, 2008, 17(1): 255-258.
[9] Molecular theory of nematic liquid crystals viewed as effect of collective excitation in ferromagnetic systems
Liu Jian-Jun (刘建军), Shen Man (沈曼), Liu Xiao-Jing (刘晓静), Yang Guo-Chen (杨国琛). Chin. Phys. B, 2006, 15(1): 163-171.
[10] Magnetic properties of mixed Ising system with random field
Liang Ya-Qiu (梁雅秋), Wei Guo-Zhu (魏国柱), Zhang Qi (张起), Qiu Wei (邱巍), Zang Shu-Liang (藏树良). Chin. Phys. B, 2004, 13(12): 2147-2152.
[11] Metastability of Ising spin chains with nearest-neighbour and next-nearest-neighbour interactions in random fields
G. Ismail, S. Hassan. Chin. Phys. B, 2002, 11(9): 948-954.
No Suggested Reading articles found!