Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 056102    DOI: 10.1088/1674-1056/20/5/056102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of substrate temperature on microstructure and optical properties of single-phased Ag2O film deposited by using radio-frequency reactive magnetron sputtering method

Ma Jiao-Min(马姣民)a), Liang Yan(梁艳)b), Gao Xiao-Yong(郜小勇)a)†, Zhang Zeng-Yuan(张增院)a), Chen Chao(陈超) a), Zhao Meng-Ke(赵孟珂)a), Yang Shi-E(杨仕娥)a), Gu Jin-Hua(谷锦华)a), Chen Yong-Sheng(陈永生) a), and Lu Jing-Xiao(卢景霄)a)
a Key Laboratory of Material Physics of Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China; b College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
Abstract  Using a radio-frequency reactive magnetron sputtering technique, a series of the single-phased Ag2O films are deposited in a mixture of oxygen and argon gas with a flow ratio of 2:3 by changing substrate temperature (Ts). Effects of the Ts on the microstructure and optical properties of the films are investigated by using X-ray diffractometry, scanning electron microscopy and spectrophotometry. The single-phased Ag2O films deposited at values of Ts below 200 ℃ are (111) preferentially oriented, which may be due to the smallest free energy of the (111) crystalline face. The film crystallization becomes poor as the value of Ts increases from 100 ℃ to 225 ℃. In particular, the Ag2O film deposited at Ts = 225 ℃ loses the (111) preferential orientation. Correspondingly, the film surface morphology obviously evolves from a uniform and compact surface structure to a loose and gullied surface structure. With the increase of Ts value, the transmissivity and the reflectivity of the films in the transparent region are gradually reduced, while the absorptivity gradually increases, which may be attributed to an evolution of the crystalline structure and the surface morphology of the films.
Keywords:  Ag2O film      radio-frequency reactive magnetron sputtering      optical properties      microstructure  
Received:  14 October 2010      Revised:  09 December 2010      Accepted manuscript online: 
PACS:  61.82.Fk (Semiconductors)  
  61.05.cp (X-ray diffraction)  
  74.25.Gz (Optical properties)  
  81.15.Cd (Deposition by sputtering)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60807001), the Foundation of Henan Educational Committee, China (Grant No. 2010A140017) and the National Basic Research Program of China (Grant No. 2011CB201605).

Cite this article: 

Ma Jiao-Min(马姣民), Liang Yan(梁艳), Gao Xiao-Yong(郜小勇), Zhang Zeng-Yuan(张增院), Chen Chao(陈超), Zhao Meng-Ke(赵孟珂), Yang Shi-E(杨仕娥), Gu Jin-Hua(谷锦华), Chen Yong-Sheng(陈永生), and Lu Jing-Xiao(卢景霄) Effect of substrate temperature on microstructure and optical properties of single-phased Ag2O film deposited by using radio-frequency reactive magnetron sputtering method 2011 Chin. Phys. B 20 056102

[1] Fuji H, Tominaga J, Men L, Nakano T, Katayama H and Atoda N 2000 Jpn. J. Appl. Phys. 39 980
[2] Chiu Y, Rambabu U, Hsu M H, Shieh H P D, Chen C Y and Lin H H 2003 J. Appl. Phys. 94 1996
[3] Kim J, Fuji H, Yamakama Y, Nakano T, Büchel D, Tominaga J and Atoda N 2001 Jpn. J. Appl. Phys. 40 1634
[4] Lu Z C, Gu Y J, Yang J X, Li Z S, Ruan W D, Xu W Q, Zhao C and Zhao B 2008 Vib. Spectrosc. 47 99
[5] Varkey A J and Fort A F 1993 Sol. Energy Matt. Sol. Cells 29 253
[6] Fortin E and Weichman F L 1964 Phys. Status Solidi. 5 515
[7] Pierson J F, Wiederkehr D and Billard A 2005 Thin Solid Films 478 196
[8] Rivers S B, Bernhardt G, Wright M W, Frankel D J, Steeves M M and Lad R J 2007 Thin Solid Films 515 8684
[9] Pierson J F and Rousselot C 2005 Surf. Coat. Technol. 200 276
[10] Gao X Y, Wang S Y, Li J, Zheng Y X, Zhang R J, Zhou P, Yang Y M and Chen L Y 2004 Thin Solid Films 455--456 438
[11] Qiu J H, Zhou P, Gao X Y, Yu J N, Wang S Y, Li J, Zheng X Y, Yang Y M, Song Q H and Chen L Y 2005 J. Korean Phys. Soc. 46 S269
[12] Gao X Y, Feng H L, Ma J M, Zhang Z Y, Lu J X, Chen Y S, Yang S E and Gu J H 2010 Physica B 405 1922
[13] Gao X Y, Feng H L, Zhang Z Y, Ma J M and Lu J X 2010 Chin. Phys. Lett. 27 026804
[14] Gao X Y, Feng H L, Ma J M and Zhang Z Y 2010 Chin. Phys. B 19 090701
[15] Feng H L, Liang Y, Gao X Y, Lin Q G ,Zhang Z Y, Ma J M, Lu J X and Ning H 2010 Chin. J. Vac. Sci. Technol. 30 211 (in Chinese)
[16] Zhang Z Y, Gao X Y, Feng H L, Ma J M and Lu J X 2011 Acta Phys. Sin. 60 016110 (in Chinese)
[17] Zhang Z Y, Gao X Y, Feng H L, Ma J M and Lu J X 2011 Acta Phys. Sin. 60 036107 (in Chinese)
[18] Gao X Y, Zhang Z Y, Ma J M, Lu J X, Gu J H and Yang S E 2011 Chin. Phys. B 20 026103
[19] Cullity B D 1959 Elements of X-ray Diffractions (London: Addition-Wesley) p. 99
[20] Tang W Z 2003 Theory and Technology of the Thin Film Production (Beijing: Metallurgical Industry Press) p. 169 endfootnotesize
[1] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[7] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[8] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[9] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[10] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[11] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[12] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[13] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[14] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[15] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
No Suggested Reading articles found!