CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure |
Zheng Cao(曹正)1,†, Qing-Qiao Fu(傅晴俏)2,†, Hui Gu(顾辉)2, Zhen Tian(田震)1, Xinba Yaer(新巴雅尔)1, Juan-Juan Xing(邢娟娟)2,‡, Lei Miao(苗蕾)3, Xiao-Huan Wang(王晓欢)1, Hui-Min Liu(刘慧敏)1, and Jun Wang(王俊)1,§ |
1 Inner Mongolia Engineering Research Center of Multi-functioanl Copper Based Materials, School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; 2 School of Materials Science and Engineering, Materials Genome Institute, Shanghai University, Shanghai 200444, China; 3 School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China |
|
|
Abstract Strontium titanate (SrTiO3) is a thermoelectric material with large Seebeck coefficient that has potential applications in high-temperature power generators. To simultaneously achieve a low thermal conductivity and high electrical conductivity, polycrystalline SrTiO3 with a multi-scale architecture was designed by the co-doping with lanthanum, cerium, and niobium. High-quality nano-powders were synthesized via a hydrothermal method. Nano-inclusions and a nano/micro-sized second phase precipitated during sintering to form mosaic crystal-like and epitaxial-like structures, which decreased the thermal conductivity. Substituting trivalent Ce and/or La with divalent Sr and substituting pentavalent Nb with tetravalent Ti enhanced the electrical conductivity without decreasing the Seebeck coefficient. By optimizing the dopant type and ratio, a low thermal conductivity of 2.77 W·m-1·K-1 and high PF of 1.1 mW·m-1·K-2 at 1000 K were obtained in the sample co-doped with 5-mol% La, 5-mol% Ce, and 5-mol% Nb, which induced a large ZT of 0.38 at 1000 K.
|
Received: 27 January 2021
Revised: 15 February 2021
Accepted manuscript online: 25 February 2021
|
PACS:
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
84.60.Rb
|
(Thermoelectric, electrogasdynamic and other direct energy conversion)
|
|
77.84.Cg
|
(PZT ceramics and other titanates)
|
|
81.20.-n
|
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51702168 and 51532006). |
Corresponding Authors:
Juan-Juan Xing, Jun Wang
E-mail: xingjuanjuan@shu.edu.cn;wangjun@imut.edu.cn
|
Cite this article:
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊) Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure 2021 Chin. Phys. B 30 097204
|
[1] Lu X, Jiang P and Bao X 2019 Nat. Commun. 10 138 [2] Okuda T, Nakanishi K, Miyasaka S and Tokura Y 2001 Phys. Rev. B 63 113104 [3] Tritt T M and Subramanian M A 2011 MRS Bull. 31 188 [4] Ohta H, Mizuno T, Zheng S, Kato T, Ikuhara Y, Abe K, Kumomi H, Nomura K and Hosono H 2012 Adv. Mater. 24 740 [5] Xiao Y and Zhao L D 2020 Science 367 1196 [6] Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P and Kanatzidis M G 2014 Nature 508 373 [7] Zhao W, Liu Z, Wei P, Zhang Q, Zhu W, Su X, Tang X, Yang J, Liu Y, Shi J, Chao Y, Lin S and Pei Y Z 2016 Nat. Nano 12 55 [8] Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki, Snyder G J, Yang R and Koumoto, K 2015 Nat. Mater. 14 622 [9] Zheng Y, Liu C, Miao L, Li C, Huang R, Gao J, Wang X, Chen J, Zhou Y and Nishibori E 2019 Nan. Energ. 59 311 [10] Minnich A J, Dresselhaus M S, Ren Z F and Chen G 2009 Energ. Environ. Sci. 2 466 [11] Sales B C, Mandrus D and Williams R K 1996 Science 272 1325 [12] Gao J, Miao L, Liu C, Wang X, Peng Y, Wei X, Zhou J, Chen Y, Hashimoto R, Asaka T and Koumoto K 2017 J. Mate. Chem. A 5 24740 [13] Liu X and Padilla W J 2012 Energ. Environ. Sci. 5 7188 [14] Li F, Li J F, Zhao L D, Xiang K, Liu Y, Zhang B P, Lin Y H, Nan C W and Zhu H M 2012 Energ. Environ. Sci. 5 7188 [15] Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H and Koumoto K 2007 Nat. Mater. 6 129 [16] Chen J, Chen H, Hao F, Ke X, Chen N, Yajima T, Jiang Y, Shi X, Zhou K, Döbeli M, Zhang, T, Ge B, Dong H, Zeng H, Wu W and Chen L 2017 ACS Energ. Lett. 2 915 [17] Zhang B, Wang J, Zou T, Zhang S, Yaer X, Ding N, Liu C, Miao L, Li Y and Wu Y 2015 J Mater. Chem. C 3 11406 [18] Muta H, Kurosaki K and Yamanaka S 2003 J. Alloy. Compd. 350 292 [19] Lu Z, Zhang H, Lei W, Sinclair D C and Reaney I M 2016 Chem. Mater. 28 925 [20] Srivastava D, Norman C, Azough F, Schäfer M C, Guilmeau E, Kepaptsoglou D, Ramasse Q M, Nicotra G and Freer R 2016 Physl. Chem. Chem. Phys. 18 26475 [21] Ohta S, Nomura T, Ohta H and Koumoto K 2005 J. Appl. Phys. 97 034106 [22] Abutaha A I, Kumar S R, Li K, Dehkordi A M, Tritt T M and Alshareef H N 2015 Chem. Mater. 27 2165 [23] Yu C, Scullin M L, Huijben M, Ramesh R and Majumdar A 2008 Appl. Phys. Lett. 92 191911 [24] Park K, Son J S, Woo S I, Shin K, Oh M W, Park S D and Hyeon T 2014 J. Mater. Chem. A 2 4217 [25] Wang N, Chen H, He H, Norimatsu W, Kusunoki M and Koumoto K 2013 Sci. Rep. 3 3449 [26] Wang J, Zhang B Y, Kang H J, Li Y, Yaer X, Li J F, Tan Q, Zhang S, Fan G H, Liu C Y, Miao L, Nan D, Wang T M and Zhao L D 2017 Nan. Energ. 35 387 [27] Yamanaka S, Kurosaki K, Maekawa T, Matsuda T, Kobayashi S I and Uno M 2005 J. Nucl. Mater. 344 61 [28] Liu C, Miao L, Hu D L, Huang R, Fisher C, Tanemura S and Gu H 2013 Phys. Rev. B 88 205201 [29] Zhao K, Zhu C, Qiu P, Blichfeld A B, Eikeland E, Ren D, Iversen B B, Xu F, Shi X and Chen L 2017 Nan. Energ. 42 43 [30] Yamasaka S, Nakamura Y, Ueda T, Takeuchi S and Sakai A 2015 Sci. Rep. 5 14490 [31] Mao J, Liu Z, Zhou J, Zhu H, Zhang Q, Chen G and Ren Z F 2018 Adv. Phys. 67 69 [32] Li Y, Hou Q Y, Wang X H, Kang H J, Yaer X, Li J B, Wang T M, Miao L and Wang J 2019 J. Mater. Chem. A 7 236 [33] Li J B, Wang J, Li J F, Li Y, Yang H, Yu H Y, Ma X B, Yaer X, Liu L and Miao L J 2018 Mater. Chem. C 6 7594 [34] Ohta S, Ohta H and Koumoto K 2006 J. Ceram. Soc. Jpn 114 102 [35] Harada S, Tanaka K and Inui H 2010 J. Appl. Phys. 108 083703 [36] Portehault D, Maneeratana V, Candolfi C, Oeschler N, Veremchuk I, Grin Y, Sanchez C and Antonietti M 2011 ACS Nano 5 9052 [37] Liu C, Miao L, Zhou J, Huang R, Fisher C A and Tanemura S 2013 J. Phys. Chem. C 117 11487 [38] He Y, Lu P, Shi X, Xu F, Zhang T, Snyder G J, Uher C and Chen L U 2015 Adv. Mater. 27 3639 [39] Ohta S, Nomura T, Ohta H, Hirano M, Hosono H and Koumoto K 2005 Appl. Phys. Lett. 87 092108 [40] Huang J L, Yan P, Liu Y P, Xing J J, Gu H, Fan Y C and Jiang W 2020 Appl. Mater. Inter. 17 108 [41] Wang K X, Wang J, Li Y, Zou T, Wang X H, Li J B, Cao Z, Shi W J and Yaer X 2018 Chin. Phys. B 27 048401 [42] Yue L, Colin N, Deepanshu S, Feridoon A, Li W, Mark R, Kevin S, Robert F and Ian A K 2015 Appl. Mater. Inter. 58 136 [43] Biswas K, He J Q, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P and Kanatzidis M G 2012 Nature 489 414 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|