CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Unidirectional expansion of lattice parameters in GaN induced by ion implantation |
Fa Tao (法涛), Li Lin (李琳), Yao Shu-De (姚淑德), Wu Ming-Fang (吴名枋), Zhou Sheng-Qiang (周生强) |
State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China |
|
|
Abstract This paper reports that the 150-keV Mn ions are implanted into GaN thin film grown on Al2O3 by metal–organic chemical vapour deposition. The X-ray diffraction reciprocal spacing mapping is applied to study the lattice parameter variation upon implantation and post-annealing. After implantation, a significant expansion is observed in the perpendicular direction. The lattice strain in perpendicular direction strongly depends on ion fluence and implantation geometry and can be partially relaxed by post-annealing. While in the parallel direction, the lattice parameter approximately keeps the same as the unimplanted GaN, which is independent of ion fluence, implantation geometry and post-annealing temperature.
|
Received: 24 October 2010
Revised: 16 December 2010
Accepted manuscript online:
|
PACS:
|
61.05.cp
|
(X-ray diffraction)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
82.80.Yc
|
(Rutherford backscattering (RBS), and other methods ofchemical analysis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11005005), the National Basic Research Program of China (Grant No. 2010CB832904), and the Bilateral Cooperation between China and Flanders (Grant No. BIL 02-02). |
Cite this article:
Fa Tao (法涛), Li Lin (李琳), Yao Shu-De (姚淑德), Wu Ming-Fang (吴名枋), Zhou Sheng-Qiang (周生强) Unidirectional expansion of lattice parameters in GaN induced by ion implantation 2011 Chin. Phys. B 20 056101
|
[1] |
Kucheyev S O, Williams J S and Pearton S J 2001 Mat. Sci. Eng. R 33 51
|
[2] |
Ronning C, Carlson E P and Davis R F 2001 Physics Reports 351 349
|
[3] |
Zhang B, Shi L Q, Chen C C and Zhao D G 2006 Nucl. Instrum. Meth. B 252 225
|
[4] |
Sun L L, Yan F W, Wang J X, Zhang H X, Zeng Y P, Wang G H and Li J M 2009 Materials Letters 63 451
|
[5] |
Zhang B, Chen C C, Yang C, Wang J Z, Shi L Q, Cheng H S and Zhao D G 2010 Nucl. Instrum. Meth. B 268 123
|
[6] |
Pearton S J, Abernathy C R, Norton D P, Hebard A F, Park Y D, Boatner L A and Budai L A 2003 Mat. Sci. Eng. R 40 137
|
[7] |
Sun L L, Yan F W, Zhang H X, Wang J X, Zeng Y P, Wang G H and Li J M 2009 Materials Science and Engineering: B 162 209
|
[8] |
Sun L L, Yan F W, Zhang H X, Wang J X, Wang G H, Zeng Y P and Li J M 2009 Appl. Surf. Sci. 255 7451
|
[9] |
Tan H H, Williams J S, Zou J, Cockayne D J H, Pearton S J and Stall R A 1996 Appl. Phys. Lett. 69 2364
|
[10] |
Liu C, Mensching B, Zeitler M, Volz K and Rauschenbach B 1998 Phys. Rev. B 57 2530
|
[11] |
Kucheyev S O, Williams J S, Jagadish C, Zou J, Li J and Titov A I 2001 Phys. Rev. B 64 035202
|
[12] |
Tan H H, Williams J S, Zou J, Cockayne D J H, Pearton S J, Zolper J C and Stall R A 1998 Appl. Phys. Lett. 72 1190
|
[13] |
Chami A C, Ligeon E, Danielou R, Fontenille J and Eymery R 1987 J. Appl. Phys. 61 161
|
[14] |
Paine B M and Speriosu V S 1987 J. Appl. Phys. 62 1704
|
[15] |
Bai G and Nicolet M A 1991 J. Appl. Phys. 70 649
|
[16] |
Liu C, Mensching B, Volz K and Rauschenbach B 1997 Appl. Phys. Lett. 71 2313.
|
[17] |
Ronning C, Linthicum K J, Carlson E P, Hartlieb P J, Thomson D B, Gehrke T and Davis R F 1999 MRS Internet J. Nitride Semicond. Res. 4S1 G3.17
|
[18] |
Vantomme A, Hogg S M, Wu M F, Pipeleers B, Swart M, Goodman S, Auret D, Lakoubovskii K, Adriaenssens G J, Jacobs K and Moerman I 2001 Nucl. Instr. and Meth. B 175--177 148
|
[19] |
Pong B J, Pan C J, Teng Y C, Chi G C, Li W H, Lee K C and Lee C H 1998 J. Appl. Phys. 83 5992
|
[20] |
Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Franco N, Watson I M and Deatcher C J 2002 Appl. Phys. Lett. 80 3913
|
[21] |
Fewster P F 1997 Crit. Rev. Solid State Mater. Sci. 22 69
|
[22] |
Koppensteiner E, Bauer G, Kibbel H and Kasper E 1994 J. Appl. Phys. 76 3489
|
[23] |
Krost A, Bl"asing J, L"unenb"urger M, Protzmann H and Heuken M 1999 Appl. Phys. Lett. 75 689
|
[24] |
Zhou S Q, Wu M F, Yao S D and Zhang G Y 2005 Chin. Phys. Lett. 22 2700 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|