Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 056501    DOI: 10.1088/1674-1056/20/5/056501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical calculations of thermophysical properties of single-wall carbon nanotube bundles

Miao Ting-Ting (缪婷婷), Song Meng-Xuan (宋梦譞), Ma Wei-Gang (马维刚), Zhang Xing (张兴)
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
Abstract  Carbon nanotube bundles are promising thermal interfacial materials due to their excellent thermal and mechanical characteristics. In this study, the phonon dispersion relations and density of states of the single-wall carbon nanotube bundles are calculated by using the force constant model. The calculation results show that the inter-tube interaction leads to a significant frequency raise of the low frequency modes. To verify the applied calculation method, the specific heat of a single single-wall carbon nanotube is calculated first based on the obtained phonon dispersion relations and the results coincide well with the experimental data. Moreover, the specific heat of the bundles is calculated and exhibits a slight reduction at low temperatures in comparison with that of the single tube. The thermal conductivity of the bundles at low temperatures is calculated by using the ballistic transport model. The calculation results indicate that the inter-tube interaction, i.e. van der Waals interaction, hinders heat transfer and cannot be neglected at extremely low temperatures. For (5, 5) bundles, the relative difference of the thermal conductivity caused by ignoring inter-tube effect reaches the maximum value of 26% around 17 K, which indicates the significant inter-tube interaction effect on the thermal conductivity at low temperatures.
Keywords:  single-wall carbon nanotube bundles      van der Waals interaction      specific heat      thermal conductivity  
Received:  20 September 2010      Revised:  28 October 2010      Accepted manuscript online: 
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.Gh (Nanotubes and nanowires)  
  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
  34.20.Cf (Interatomic potentials and forces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50730006 and 50976053).

Cite this article: 

Miao Ting-Ting (缪婷婷), Song Meng-Xuan (宋梦譞), Ma Wei-Gang (马维刚), Zhang Xing (张兴) Theoretical calculations of thermophysical properties of single-wall carbon nanotube bundles 2011 Chin. Phys. B 20 056501

[1] Iijima S 1991 Nature 354 56
[2] Miao L, Liu H J, Hu Y, Zhou X, Hu C Z and Shi J 2010 Chin. Phys. B 19 016301
[3] Kim P, Shi L, Majumdar A and McEuen L 2001 Phys. Rev. Lett. 87 215502
[4] Fujii M, Zhang X, Xie H Q, Ago H, Takahashi K, Ikuta T, Abe H and Shimizu T 2005 Phys. Rev. Lett. 95 065502
[5] Pop E, Mann D, Wang Q, Goodson K and Dai H J 2006 Nano Lett. 6 96
[6] Berber S, Kwon Y K and Tomanek D 2000 Phys. Rev. Lett. 84 4613
[7] Maruyama S, Kojima R, Miyauchi Y, Chiashi S and Kohno M 2002 Chem. Phys. Lett. 360 229
[8] Mingo N and Broido D A 2005 Phys. Rev. Lett. 95 096105
[9] Lindsay L, Broido D A and Mingo N 2009 Phys. Rev. B bf 80 125407
[10] Choi S U S, Zhang Z G, Yu W, Lockwood F E and Grulke E A 2001 Appl. Phys. Lett. 79 2252
[11] Fan S S, Chapline M G, Franklin N R, Tombler T W, Cassell A M and Dai H J 1999 Science 283 512
[12] Andrews R, Jacques D, Rao A M, Derbyshire F, Qian D, Fan X, Dickey E C and Chen J 1999 Chem. Phys. Lett. 303 467
[13] Pal S K, Son Y, Borca-Tasciuc T, Borca-Tasciuc D A, Kar S, Vajtai R and Ajayan P A 2008 J. Mater. Res. 23 2099
[14] Gu H W and Swager T M 2008 Adv. Mater. 20 4433
[15] Hone J, Batlogg B, Benes Z, Johnson A T and Fischer J E 2000 Science 289 1730
[16] Xu J and Fisher T S 2006 Int. J. Heat Mass Transfer bf 49 1658
[17] Kang J W, Song K O, Hwang H J and Jiang Q 2006 it Nanotechnology 17 2250
[18] Cox B J, Thamwattana N and Hill J M 2008 Proc. R. Soc. A 464 691
[19] Thess A, Lee R, Nikolaev P, Dai H J, Petit P, Robert J, Xu C H, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E and Smalley R E 1996 Science 273 483
[20] Callaway J 1976 Quantum Theory of the Solid State (1st ed) (New York: Academic Press) pp. 1--52
[21] Satio R 1998 Physical Properties of Carbon Nanotubes (5th ed) (London: Imperial College Press) pp. 35--53
[22] Lu J P and Yang W T 1994 Phys. Rev. B 49 11421
[23] Venkateswaran U D, Rao A M, Richter E, Menon M, Rinzler A, Smalley R E and Eklund P C 1999 Phys. Rev. B 59 10928
[24] Kahn D and Lu J P 1999 Phys. Rev. B 60 6535
[25] Popov V N, van Doren V E and Balkanski M 2000 Phys. Rev. B 61 3078
[26] Tang J, Qin L C, Sasaki T, Yudasaka M, Matsushita A and Iijima S 2000 Phys. Rev. Lett. 85 1887
[27] Hone J, Llaguno M C, Nemes N M, Johnson A T, Fischer J E, Walters D A, Casavant M J, Schmidt J and Smalley R E 2000 Appl. Phys. Lett. 77 666
[28] Yamamoto T, Watanabe S and Watanabe K 2004 Phys. Rev. Lett. 92 075502
[29] Xiao Y, Yan X H, Cao J X and Ding J W 2003 J. Phys.: Condens. Matter 15 L341
[30] Hone J ,Whitney M, Piskoti C and Zettl A 1999 Phys. Rev. B 59 R2514
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
Jia-Ying Yang(杨家营), Xu Liu(刘旭), Ji-Hong Qin(秦吉红), and Huai-Ming Guo(郭怀明). Chin. Phys. B, 2022, 31(6): 060504.
[6] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[7] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[8] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[9] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[10] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[11] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[12] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[13] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[14] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[15] Absence of magnetic order in dichloro [1,2-bis (diphenylphosphino) ethane] nickel2 + single crystal
Shuaiqi Ma(马帅奇), Linlin An(安琳琳), and Xiangde Zhu(朱相德). Chin. Phys. B, 2021, 30(5): 057501.
No Suggested Reading articles found!