Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 038801    DOI: 10.1088/1674-1056/20/3/038801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The role of vacancy, impurity, impurity–vacancy complex in the kinetics of LiNH2 complex hydrides: a first-principles study

Liu Gui-Li(刘贵立)a)† , Zhang Guo-Ying(张国英)b), Zhang Hui(张辉)b), and Zhu Sheng-Long(朱圣龙)c)
a College of Constructional Engineering, Shenyang University of Technology, Shenyang 110023, China; b College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China; c State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  This paper studies first-principles plane-wave pseudopotential based on density functional theory of hydrogen vacancy, metal impurity, impurity–vacancy complex in LiNH2, a promising material for hydrogen storage. It finds easy formation of H vacancy in the form of impurity–vacancy complex, and the rate-limiting step to the H diffusion. Based on the analysis of the density of states, it finds that the improvement of the dehydrogenating kinetics of LiNH2 by Ti catalysts and Mg substitution is due to the weak bonding of N–H and the new system metal-like, which makes H atom diffuse easily. The mulliken overlap population analysis shows that H vacancy leads to the H local diffusion, whereas impurity–vacancy complexes result from H nonlocal diffusion, which plays a dominant role in the process of dehydrogenation reaction of LiNH2.
Keywords:  LiNH2      first-principles calculation      impurity–vacancy complexes      dehydrogenating properties  
Received:  31 May 2010      Revised:  11 October 2010      Accepted manuscript online: 
PACS:  88.30R-  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA05Z105), and the Natural Science Foundation of Liaoning Province of China (Grant No. 20102173).

Cite this article: 

Liu Gui-Li(刘贵立), Zhang Guo-Ying(张国英), Zhang Hui(张辉), and Zhu Sheng-Long(朱圣龙) The role of vacancy, impurity, impurity–vacancy complex in the kinetics of LiNH2 complex hydrides: a first-principles study 2011 Chin. Phys. B 20 038801

[1] Chen P, Xiong Z T, Luo J Z, Lin J Y and Tan K L 2002 Nature 420 302
[2] Ichikawa T, Isobe S, Hanada N and Fujii H 2004 J. Alloys Compd. 365 271
[3] Nakamori Y and Orimo S 2004 J. Alloys Compd. 370 271
[4] Orimo S, Nakamori Y, Kitahara G, Miwa K, Ohba N, Noritake T and Towata S 2004 Appl. Phys. A 79 1765
[5] Isob S, Ichikawa T, Hanada N, Leng H Y, Fichtner M, Fuhr O and Fujii H 2005 J. Alloys Compd. 404--406 439
[6] Isob S, Ichikawa T, Kojima Y and Fujii H 2007 J. Alloys Compd. 446--447 360
[7] Shi Q, Vossa J, Jacobsen H S, Lefmann K, Zamponi M and Vegge T 2007 J. Alloys Compd. 446--447 469
[8] Zhang H, Liu G L, Qi K Z, Zhang G Y and Zhu S L 2010 Chin. Phys. B 19 048601
[9] Segall M D, Lindan P L D and Probert M J 2002 J. Phys.: Condens. Matter. 14 2717
[10] Marlo M and Milman V 2000 Phys. Rev. B 62 2899
[11] Vanderbilt D 1990 Phys. Rev. B 41 7892
[12] Jacobs H and Juza R 1972 Z. Anorg. Allg. Chem. 391 271
[13] van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[14] Mott N F and Gurney R W 1948 Electronic Processes in Ionic Crystals 2nd ed. (London: Oxford University Press)
[15] Parlinski K, Jochym P T, Kozubski R and Oramus P 2003 Intermetallics 11 157
[16] Henkelman G and J'onsson H 2000 J. Chem. Phys. 113 9978 endfootnotesize
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[13] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!