Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 038701    DOI: 10.1088/1674-1056/20/3/038701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Analysis of a phase synchronized functional network based on the rhythm of brain activities

Li Ling(李凌)a),Jin Zhen-Lan(金贞兰)a),and Li Bin(李斌)b)
a Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; b School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  Rhythm of brain activities represents oscillations of postsynaptic potentials in neocortex, therefore it can serve as an indicator of the brain activity state. In order to check the connectivity of brain rhythm, this paper develops a new method of constructing functional network based on phase synchronization. Electroencephalogram (EEG) data were collected while subjects looking at a green cross in two states, performing an attention task and relaxing with eyes-open. The EEG from these two states was filtered by three band-pass filters to obtain signals of theta (4–7 Hz), alpha (8–13 Hz) and beta (14–30 Hz) bands. Mean resultant length was used to estimate strength of phase synchronization in three bands to construct networks of both states, and mean degree K and cluster coefficient C of networks were calculated as a function of threshold. The result shows higher cluster coefficient in the attention state than in the eyes-open state in all three bands, suggesting that cluster coefficient reflects brain state. In addition, an obvious fronto-parietal network is found in the attention state, which is a well-known attention network. These results indicate that attention modulates the fronto-parietal connectivity in different modes as compared with the eyes-open state. Taken together this method is an objective and important tool to study the properties of neural networks of brain rhythm.
Keywords:  electroencephalogram      phase synchronization      rhythm      functional brain network  
Received:  09 August 2010      Revised:  22 October 2010      Accepted manuscript online: 
PACS:  87.19.le (EEG and MEG)  
  64.60.aq (Networks)  
  89.75.Fb (Structures and organization in complex systems)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 30800242).

Cite this article: 

Li Ling(李凌), Jin Zhen-Lan(金贞兰), and Li Bin(李斌) Analysis of a phase synchronized functional network based on the rhythm of brain activities 2011 Chin. Phys. B 20 038701

[1] Dietsch G 1932 Pfl"uger's Arch. Ges. Physiol. 230 106
[2] Schiff S J, Aldroubi A, Unser M and Sato S 1994 Electroenceph. Clin. Neurophysiol. 91 442
[3] Meng Q F, Zhou W D, Chen Y H and Peng Y H 2010 Acta Phys. Sin. 59 123 (in Chinese)
[4] Aftanas L I and Golocheikine S A 2002 Neurosci. Lett. 330 143
[5] Nunez P L, Wingeier B M and Silberstein R B 2001 Hum. Brain Mapp. 13 125
[6] Barry R J, Clarke A R, Johnstone S J, Magee C A and Rushby J A 2007 Clin. Neurophysiol. 118 2765
[7] Chen A C N, Feng W, Zhao H, Yin Y and Wang P 2008 NeuroImage 41 561
[8] Pollen D A and Trachtenberg M C 1972 Brain Res. 41 303
[9] Gevins A, Smith M E, McEvoy L and Yu D 1997 Cereb. Cortex bf 7 374
[10] Rihs T A, Michel C M and Thut G 2007 Eur. J. Neurosci. bf 25 603
[11] Basar E, Schurmann M, Basar-Eroglu C and Karakas S 1997 Intl. J. Psychophysiol. 26 5
[12] Klimesch W, Doppelmayr M, Schwaiger J, Auinger P and Winkler T 1999 Cogn. Brain Res. 7 493
[13] Lee L, Harrison L M and Mechelli A 2002 NeuroImage 19 457
[14] Stam C J, Jones B F, Nolte G, Breakspear M and Scheltens P H 2007 Cereb. Cortex 17 92
[15] Fang X L and Jiang Z L 2007 Acta Phys. Sin. 56 7330 (in Chinese)
[16] Stam C J, van Cappellen van Walsum A M, Pijnenburg Y A, Berendse H W, de Munck J C, Scheltens P and van Dijk B W 2002 J. Clin. Neurophysiol. 19 562
[17] Hwa R C and Ferree T C 2002 Phys. Rev. E 66 021901
[18] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[19] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys. Rev. Lett. 76 1804
[20] Li L, Yao D and Yin G 2009 Brain Res. 1282 84
[21] Mormann F, Lehnertz K, David P and Elger C E 2000 Phys. D bf 144 358
[22] Sauseng P, Klimesch W, Schabus M and Doppelmayr M 2005 Int. J. Psychophysiol. 57 97
[23] Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B and Schnitzler A 2004 Proc. Natl. Acad. Sci. 101 13050
[24] Doesburg S M Roggeveen A B, Kitajo K and Ward L M 2008 Cereb. Cortex 18 386
[25] Stam C J 2004 Neurosci. Lett. 355 25
[26] He Y, Chen Z J and Evans A C 2007 Cereb. Cortex 17 2407
[27] Sporns O and Zwi J D 2004 Neuroinformatics 2 145
[28] Babiloni C, Vecchio F, Bultrini A, Luca Romani G and Rossini P M 2006 Cereb. Cortex 16 1690
[29] Mantini D, Perrucci M G, Del Gratta C, Romani G L and Corbetta M 2007 Proc. Natl. Acad. Sci. 104 13170
[30] Corbetta M and Shulman G L 2002 Nat. Rev. Neurosci. 3 215
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[3] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[4] Preliminary abnormal electrocardiogram segment screening method for Holter data based on long short-term memory networks
Siying Chen(陈偲颖), Hongxing Liu(刘红星). Chin. Phys. B, 2020, 29(4): 040701.
[5] Cross-frequency network analysis of functional brain connectivity in temporal lobe epilepsy
Hai-Tao Yu(于海涛), Li-Hui Cai(蔡立辉), Xin-Yu Wu(武欣昱), Jiang Wang(王江), Jing Liu(刘静), Hong Zhang(张宏). Chin. Phys. B, 2019, 28(4): 048702.
[6] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[7] The birhythmicity increases the diversity of p53 oscillation induced by DNA damage
Dao-Guang Wang(王道光), Chun-Hong Zhou(周春红), Xiao-Peng Zhang(张小鹏). Chin. Phys. B, 2017, 26(12): 128709.
[8] Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns
Gu Hua-Guang (古华光), Chen Sheng-Gen (陈胜根), Li Yu-Ye (李玉叶). Chin. Phys. B, 2015, 24(5): 050505.
[9] Collective dynamics in a non-dissipative two-coupled pendulum system
Chen Zi-Chen (陈子辰), Li Bo (李博), Qiu Hai-Bo (邱海波), Xi Xiao-Qiang (惠小强). Chin. Phys. B, 2014, 23(5): 050506.
[10] Phase synchronization and synchronization frequency of two-coupled van der Pol oscillators with delayed coupling
Hossein Gholizade-Narm, Asad Azemi, Morteza Khademi. Chin. Phys. B, 2013, 22(7): 070502.
[11] Rhythm dynamics of complex neuronal networks with mixed bursting neurons
Lü Yong-Bing (吕永兵), Shi Xia (石霞), Zheng Yan-Hong (郑艳红). Chin. Phys. B, 2013, 22(4): 040505.
[12] Self-sustained firing activities of the cortical network with plastic rules in weak AC electrical fields
Qin Ying-Mei(秦迎梅), Wang Jiang(王江), Men Cong(门聪), Zhao Jia(赵佳), Wei Xi-Le(魏熙乐), and Deng Bin(邓斌) . Chin. Phys. B, 2012, 21(7): 078702.
[13] Detrended cross-correlation analysis of electroencephalogram
Wang Jun(王俊) and Zhao Da-Qing(赵大庆) . Chin. Phys. B, 2012, 21(2): 028703.
[14] Experimental observation of multirhythmic pattern in chains of Rossler circuits
Liu Wei-Qing (刘维清), Deng Jing-Fa (邓经发), Xiao Jing-Hua (肖井华). Chin. Phys. B, 2012, 21(12): 128701.
[15] Noise-induced synchronous stochastic oscillations in small scale cultured heart-cell networks
Yuan Lan(袁岚), Liu Zhi-Qiang(刘志强), Zhang Hui-Min(张慧敏), Ding Xue-Li(丁学利), Yang Ming-Hao(杨明浩), Gu Hua-Guang(古华光), and Ren Wei(任维). Chin. Phys. B, 2011, 20(2): 020508.
No Suggested Reading articles found!