CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic entropy change and large refrigerant capacity of Ce6i2Si3-type GdCoSiGe compound |
Shen Jun(沈俊)a)†,Zhang Hu(张虎)b),and Wu Jian-Feng(吴剑峰)a) |
a Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; b State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Magnetic entropy change ($\Delta S_{\rm M})$ and refrigerant capacity ($RC$) of Ce$_{6}$Ni$_{2}$Si$_{3}$-type Gd$_{6}$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ compounds have been investigated. The Gd$_{6}$Co$_{1.67}$Si$_{2.5}$Ge$_{0.5}$ undergoes a reversible second-order phase transition at the Curie temperature $T_{\rm C} = 296$ K. The high saturation magnetization leads to a large $\Delta S_{\rm M}$ and the maximal value of $\Delta S_{\rm M}$ is found to be 5.9 J/kg$\cdot$K around $T_{\rm C}$ for a field change of 0--5 T. A broad distribution of the $\Delta S_{\rm M}$ peak is observed and the full width at half maximum of the $\Delta S_{\rm M}$ peak is about 101~K under a magnetic field of 5 T. The large $RC$ is found around $T_{\rm C}$ and its value is 424 J/kg.
|
Received: 18 August 2010
Revised: 28 September 2010
Accepted manuscript online:
|
PACS:
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004204 and 51001114), the Knowledge Innovation Project of the Chinese Academy of Sciences, and the National Basic Research Program of China (Grant No. 2006CB601101). |
Cite this article:
Shen Jun(沈俊), Zhang Hu(张虎), and Wu Jian-Feng(吴剑峰) Magnetic entropy change and large refrigerant capacity of Ce6i2Si3-type GdCoSiGe compound 2011 Chin. Phys. B 20 027501
|
[1] |
Gschneidner K A Jr, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
|
[2] |
Brück E 2008 in Handbook of Magnetic Materials ed. Buschow K H J (Amsterdam: Elsevier) Vol. 17, pp. 235
|
[3] |
Shen B G, Sun J R, Hu F X, Zhang H W and Chen Z H 2009 Adv. Mater. 21 4545
|
[4] |
Pecharsky V K and Gschneidner K A Jr 1997 Phys. Rev. Lett. 78 4494
|
[5] |
Hu F X, Shen B G, Sun J R and Zhang X X 2000 Chin. Phys. 9 550
|
[6] |
Hu F X, Shen B G, Sun J R, Chen Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
|
[7] |
Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
|
[8] |
Tegus O, Brück E, Buschow K H J and de Boer F R 2002 it Nature (London) 415 150
|
[9] |
Hu F X, Shen B G and Sun J R 2000 Appl. Phys. Lett. bf 76 3460
|
[10] |
Hu F X, Shen B G, Sun J R and Wu G H 2001 Phys. Rev. B 64 132412
|
[11] |
Pecharsky V K and Gschneidner K A Jr 1999 J. Magn. Magn. Mater. 200 44
|
[12] |
Shen J, Wu J F and Sun J R 2009 J. Appl. Phys. 106 083902
|
[13] |
Gaudin E, Weill F and Chevalier B 2006 Z. Naturforsch 61b 825
|
[14] |
Chevalier B, Gaudin E and Weill F 2007 J. Alloys Compd. 442 149
|
[15] |
Shen J, Li Y X, Dong Q Y, Wang F and Sun J R 2008 Chin. Phys. B 17 2268
|
[16] |
Gaudin E, Tenc'e S, Weill F, Fernandez J R and Chevalier B 2008 Chem. Mater. 20 2972
|
[17] |
Jammalamadaka S N, Mohapatra N, Das S D, Iyer K K and Sampathkumaran E V 2008 J. Phys.: Condens. Matter 20 425204
|
[18] |
Singh N K, Suresh K G, Nirmala R, Nigam A K and Malik S K 2007 J. Appl. Phys. 101 093904
|
[19] |
Arora P, Tiwari P, Sathe V G and Chattopadhyay M K 2009 J. Magn. Magn. Mater. 321 3278
|
[20] |
Chen J, Shen B G, Dong Q Y, Hu F X and Sun J R 2009 Appl. Phys. Lett. 95 132504
|
[21] |
Canepa F, Napoletano M and Cirafici S 2002 Intermetallics 10 731
|
[22] |
Zhang T, Chen Y, Teng B, Tang Y, Fu H and Tu M 2007 Mater. Lett. 61 440
|
[23] |
Liu X B, Zhang S Y and Shen B G 2004 Chin. Phys. 13 397
|
[24] |
Gschneidner Jr K A, Pecharsky V K, Pecharsky A O and Zimm C B 1999 Mater. Sci. Forum 315 69
|
[25] |
Hu F X, Shen B G, Sun J R, Wang G J and Cheng Z H 2002 it Appl. Phys. Lett. bf80 826
|
[26] |
Hu F X, Shen B G, Sun J R and Cheng Z H 2001 Phys. Rev. B 64 12409
|
[27] |
Balli M, Fruchart D and Gignoux D 2007 J. Phys.: Condens. Matter 19 236230
|
[28] |
Balli M, Fruchart D and Gignoux D 2008 Appl. Phys. Lett. 90 232505
|
[29] |
Provenzano V, Shapiro A J and Shull R D 2004 Nature (London) 429 853
|
[30] |
Zhang T B, Chen Y G and Tang Y B 2007 J. Phys. D: Appl. Phys. 40 5778
|
[31] |
Tegus O, Brück E, Zhang L, Dagula, Buschow K H J and de Boer F R 2002 Physica B 319 174
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|