Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 027402    DOI: 10.1088/1674-1056/20/2/027402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of oxygen pressure on critical current density and magnetic flux pinning structures in YBa2Cu3O7-x fabricated by chemical solution deposition

Ding Fa-Zhu(丁发柱), Gu Hong-Wei(古宏伟), Zhang Teng(张腾), Dai Shao-Tao(戴少涛), and Xiao Li-Ye(肖立业)
Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
Abstract  This paper studies the effect of oxygen partial pressure on the fabrication of YBa2Cu3O7-x films on (00l) LaAlO3 substrates by metalorganic deposition using trifluoroacetates (TFA-MOD). As the oxygen partial pressure increases to 1500 Pa, a great increase in the superconducting properties is observed at high magnetic fields parallel to the YBCO c axis. The cross-sectional transmission electron microscope images show that a high density of stacking faults in the size range of 10-15 nm may act as flux pinning centres to enhance the critical current density of the YBCO films.
Keywords:  YBCO      oxygen pressure      stacking fault      TFA-MOD  
Received:  01 September 2010      Revised:  13 September 2010      Accepted manuscript online: 
PACS:  74.76.Bz  
  81.15.Lm (Liquid phase epitaxy; deposition from liquid phases (melts, solutions, And surface layers on liquids))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51002149).

Cite this article: 

Ding Fa-Zhu(丁发柱), Gu Hong-Wei(古宏伟), Zhang Teng(张腾), Dai Shao-Tao(戴少涛), and Xiao Li-Ye(肖立业) Influence of oxygen pressure on critical current density and magnetic flux pinning structures in YBa2Cu3O7-x fabricated by chemical solution deposition 2011 Chin. Phys. B 20 027402

[1] Foltyn S R, Civale L, MacManus-Driscoll J L, Jia Q X, Maiorov B, Wang H and Maley M 2007 Nature Mater. 6 631
[2] Crisan A, Fujiwara S, Nie J C, Sundaresan A and Ihara H 2001 Appl. Phys. Lett. 79 4547
[3] Aytug T, Paranthaman M, Gapud A A, Kang S, Christen H M, Leonard K J, Martin P M, Thompson J R, Christen D K, Meng R, Rusakova I, Chu C W and Johansen T H 2005 J. Appl. Phys. 98 114309
[4] Nie J C, Yamasaki H, Yamada H, Nakagawa Y, Develos-Bagarinao K and Mawatari Y 2004 Supercond. Sci. Technol. 17 845
[5] Shi D Q, Ma P, Rock K Ko, Kim H S, Chung J K, Song K J and Chan P 2007 Chin. Phys. 16 2142
[6] MacManus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P and Peterson D E 2004 Nature Mater. 3 439
[7] Baca F J, Barnes P N, Emergo R S, Haugan T J, Reichart J N and Wu J Z 2009 Appl. Phys. Lett. 94 102512
[8] Varanasi C V, Barnes P N, Burke J, Brunke L, Maartense I, Haugan T J, Stinzianni E A, Dunn K A and Haldar P 2006 Supercond. Sci. Technol. 19 L37
[9] Zhou Y X, Ghalsasi S, Rusakova I and Salama K 2007 Supercond. Sci. Technol. 20 S147
[10] Haugan T, Barnes P N, Wheeler R, Meisenkothen F and Sumption M 2004 Nature 430 867
[11] MacManus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Maiorov B, Civale L, Lin Y, Hawley M E, Maley M P and Peterson D E 2004 Appl. Phys. Lett. 84 5329
[12] Barnes P N, Kell J W, Harrison B C, Haugan T J, Varanasi C V, Rane M and Ramos F 2006 Appl. Phys. Lett. 89 012503
[13] Pradhan A K, Muralidhar M, Feng Y, Murakami M, Nakao K and Koshizuka N 2000 Appl. Phys. Lett. 77 2003
[14] Li L W, Cao S X, Li W F, Liu F, Chi C Y, Jing C and Zhang J C 2005 Acta Phys. Sin. 54 3839 (in Chinese)
[15] Li P L, Wang Y Y, Tian Y T, Wang J, Niu X L, Wang J X, Wang D D and Wang X X 2008 Chin. Phys. B 17 3484
[16] Lee S Y, Song S and Kim B J 2006 Physica C 445--448 578
[17] Nakaoka K, Matsuda J, Kitoh Y, Goto T, Yamada Y, Izumi T and Shiohara Y 2007 Physica C 463--465 519
[18] Feldmann D M, Ugurlu O, Maiorov B, Stan L, Holesinger T G, Civale L, Foltyn S R and Jia Q X 2007 Appl. Phys. Lett. 91 162501
[19] Chen Z, Kametani F, Kim S I, Larbalestier D C, Jang H W, Choi K J and Eom C B 2008 J. Appl. Phys. 103 043913
[20] Kim H S, Song B, Kwon N Y, Kim K L and Lee H G 2009 Supercond. Sci. Technol. 22 125016
[21] Dam B, Huijbregtse J M, Klaassen F C, Geest R F, Doornbos G, Rector J H, Testa A M, Freisem S, Martinezk J C, St"auble-P"umpin B and Griessen R 1999 Nature 399 439 endfootnotesize
[1] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[2] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[3] Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults
Hong-Ping Yang(杨宏平), Wen-Juan Yuan(原文娟), Jun Luo(罗俊), Jing Zhu(朱静). Chin. Phys. B, 2019, 28(7): 078106.
[4] Enhancing superconductivity of ultrathin YBa2Cu3O7-δ films by capping non-superconducting oxides
Hai Bo(薄海), Tianshuang Ren(任天爽), Zheng Chen(陈峥), Meng Zhang(张蒙), Yanwu Xie(谢燕武). Chin. Phys. B, 2019, 28(6): 067402.
[5] Strongly enhanced flux pinning in the YBa2Cu3O7-X films with the co-doping of BaTiO3 nanorod and Y2O3 nanoparticles at 65 K
Wang Hong-Yan (王洪艳), Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾). Chin. Phys. B, 2015, 24(9): 097401.
[6] Molecular dynamics simulation on generalized stacking fault energies of FCC metals under preloading stress
Zhang Liang (张亮), Lü Cheng (吕程), Tieu Kiet, Zhao Xing (赵星), Pei Lin-Qing (裴林清), Michal Guillaume. Chin. Phys. B, 2015, 24(8): 088106.
[7] Stacking fault energy, yield stress anomaly, and twinnability of Ni3Al: A first principles study
Liu Li-Li (刘利利), Wu Xiao-Zhi (吴小志), Wang Rui (王锐), Li Wei-Guo (李卫国), Liu Qing (刘庆). Chin. Phys. B, 2015, 24(7): 077102.
[8] Temperature-dependent photoluminescence spectra of GaN epitaxial layer grown on Si (111) substrate
Zhao Dan-Mei (赵丹梅), Zhao De-Gang (赵德刚), Jiang De-Sheng (江德生), Liu Zong-Shun (刘宗顺), Zhu Jian-Jun (朱建军), Chen Ping (陈平), Liu Wei (刘炜), Li Xiang (李翔), Shi Ming (侍铭). Chin. Phys. B, 2015, 24(10): 108101.
[9] Fabrication and properties of high performance YBa2Cu3O7-δ radio frequency SQUIDs with step-edge Josephson junctions
Liu Zheng-Hao (刘政豪), Wei Yu-Ke (魏玉科), Wang Da (王达), Zhang Chen (张琛), Ma Ping (马平), Wang Yue (王越). Chin. Phys. B, 2014, 23(9): 097401.
[10] Effect of Re on stacking fault nucleation under shear strain in Ni by atomistic simulation
Liu Zheng-Guang (刘争光), Wang Chong-Yu (王崇愚), Yu Tao (于涛). Chin. Phys. B, 2014, 23(11): 110208.
[11] First-principles study of the effects of selected interstitial atoms on the generalized stacking fault energies, strength, and ductility of Ni
Li Chun-Xia (李春霞), Dang Sui-Hu (党随虎), Wang Li-Ping (王丽萍), Zhang Cai-Li (张彩丽), Han Pei-De (韩培德). Chin. Phys. B, 2014, 23(11): 117102.
[12] Precursor evolution and growth mechanism of BTO/YBCO films by TFA-MOD process
Wang Hong-Yan (王洪艳), Ding Fa-Zhu (丁发柱), Gu Hong-Wei (古宏伟), Zhang Teng (张腾), Peng Xing-Yu (彭星煜). Chin. Phys. B, 2014, 23(10): 107402.
[13] Magnetization of Gd diffused Yba2Cu3O7-x superconductor:Experiment and theory
F. Inanira, Ş. Yildizb, K. Ozturkc, S. Celebic. Chin. Phys. B, 2013, 22(7): 077402.
[14] A model for the chain-to-plane charge transfer in YBa2Cu3O6+x
V. M. Matic, N. Dj. Lazarov, M. Milic. Chin. Phys. B, 2012, 21(11): 117401.
[15] Effects of twin and stacking faults on the deformation behaviors of Al nanowires under tension loading
An Min-Rong (安敏荣), Song Hai-Yang (宋海洋), Su Jin-Fang (苏锦芳). Chin. Phys. B, 2012, 21(10): 106202.
No Suggested Reading articles found!