CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Influence of oxygen pressure on critical current density and magnetic flux pinning structures in YBa2Cu3O7-x fabricated by chemical solution deposition |
Ding Fa-Zhu(丁发柱)†, Gu Hong-Wei(古宏伟), Zhang Teng(张腾), Dai Shao-Tao(戴少涛), and Xiao Li-Ye(肖立业) |
Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract This paper studies the effect of oxygen partial pressure on the fabrication of YBa2Cu3O7-x films on (00l) LaAlO3 substrates by metalorganic deposition using trifluoroacetates (TFA-MOD). As the oxygen partial pressure increases to 1500 Pa, a great increase in the superconducting properties is observed at high magnetic fields parallel to the YBCO c axis. The cross-sectional transmission electron microscope images show that a high density of stacking faults in the size range of 10-15 nm may act as flux pinning centres to enhance the critical current density of the YBCO films.
|
Received: 01 September 2010
Revised: 13 September 2010
Accepted manuscript online:
|
PACS:
|
74.76.Bz
|
|
|
81.15.Lm
|
(Liquid phase epitaxy; deposition from liquid phases (melts, solutions, And surface layers on liquids))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51002149). |
Cite this article:
Ding Fa-Zhu(丁发柱), Gu Hong-Wei(古宏伟), Zhang Teng(张腾), Dai Shao-Tao(戴少涛), and Xiao Li-Ye(肖立业) Influence of oxygen pressure on critical current density and magnetic flux pinning structures in YBa2Cu3O7-x fabricated by chemical solution deposition 2011 Chin. Phys. B 20 027402
|
[1] |
Foltyn S R, Civale L, MacManus-Driscoll J L, Jia Q X, Maiorov B, Wang H and Maley M 2007 Nature Mater. 6 631
|
[2] |
Crisan A, Fujiwara S, Nie J C, Sundaresan A and Ihara H 2001 Appl. Phys. Lett. 79 4547
|
[3] |
Aytug T, Paranthaman M, Gapud A A, Kang S, Christen H M, Leonard K J, Martin P M, Thompson J R, Christen D K, Meng R, Rusakova I, Chu C W and Johansen T H 2005 J. Appl. Phys. 98 114309
|
[4] |
Nie J C, Yamasaki H, Yamada H, Nakagawa Y, Develos-Bagarinao K and Mawatari Y 2004 Supercond. Sci. Technol. 17 845
|
[5] |
Shi D Q, Ma P, Rock K Ko, Kim H S, Chung J K, Song K J and Chan P 2007 Chin. Phys. 16 2142
|
[6] |
MacManus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Civale L, Maiorov B, Hawley M E, Maley M P and Peterson D E 2004 Nature Mater. 3 439
|
[7] |
Baca F J, Barnes P N, Emergo R S, Haugan T J, Reichart J N and Wu J Z 2009 Appl. Phys. Lett. 94 102512
|
[8] |
Varanasi C V, Barnes P N, Burke J, Brunke L, Maartense I, Haugan T J, Stinzianni E A, Dunn K A and Haldar P 2006 Supercond. Sci. Technol. 19 L37
|
[9] |
Zhou Y X, Ghalsasi S, Rusakova I and Salama K 2007 Supercond. Sci. Technol. 20 S147
|
[10] |
Haugan T, Barnes P N, Wheeler R, Meisenkothen F and Sumption M 2004 Nature 430 867
|
[11] |
MacManus-Driscoll J L, Foltyn S R, Jia Q X, Wang H, Serquis A, Maiorov B, Civale L, Lin Y, Hawley M E, Maley M P and Peterson D E 2004 Appl. Phys. Lett. 84 5329
|
[12] |
Barnes P N, Kell J W, Harrison B C, Haugan T J, Varanasi C V, Rane M and Ramos F 2006 Appl. Phys. Lett. 89 012503
|
[13] |
Pradhan A K, Muralidhar M, Feng Y, Murakami M, Nakao K and Koshizuka N 2000 Appl. Phys. Lett. 77 2003
|
[14] |
Li L W, Cao S X, Li W F, Liu F, Chi C Y, Jing C and Zhang J C 2005 Acta Phys. Sin. 54 3839 (in Chinese)
|
[15] |
Li P L, Wang Y Y, Tian Y T, Wang J, Niu X L, Wang J X, Wang D D and Wang X X 2008 Chin. Phys. B 17 3484
|
[16] |
Lee S Y, Song S and Kim B J 2006 Physica C 445--448 578
|
[17] |
Nakaoka K, Matsuda J, Kitoh Y, Goto T, Yamada Y, Izumi T and Shiohara Y 2007 Physica C 463--465 519
|
[18] |
Feldmann D M, Ugurlu O, Maiorov B, Stan L, Holesinger T G, Civale L, Foltyn S R and Jia Q X 2007 Appl. Phys. Lett. 91 162501
|
[19] |
Chen Z, Kametani F, Kim S I, Larbalestier D C, Jang H W, Choi K J and Eom C B 2008 J. Appl. Phys. 103 043913
|
[20] |
Kim H S, Song B, Kwon N Y, Kim K L and Lee H G 2009 Supercond. Sci. Technol. 22 125016
|
[21] |
Dam B, Huijbregtse J M, Klaassen F C, Geest R F, Doornbos G, Rector J H, Testa A M, Freisem S, Martinezk J C, St"auble-P"umpin B and Griessen R 1999 Nature 399 439 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|