Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 128101    DOI: 10.1088/1674-1056/20/12/128101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Raman analysis of epitaxial graphene grown on 4H–SiC (0001) substrate under low pressure condition

Wang Dang-Chao(王党朝)a)b)†, Zhang Yu-Ming(张玉明) a), Zhang Yi-Men(张义门)a), Lei Tian-Min(雷天民)a), Guo Hui(郭辉)a), Wang Yue-Hu(王悦湖)a), Tang Xiao-Yan(汤晓燕)a), and Wang Hang(王航) a)
a School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China; School of Physics and Electronic Engineering, Xianyang Normal College, Xianyang 712000, China
Abstract  In this paper, we report a feasible route of growing epitaxial graphene on 4H-SiC (0001) substrate in a low pressure of 4 mbar (1 bar=105 Pa) with an argon flux of 2 standard liters per minute at 1200, 1300, 1400, and 1500 ℃ in a commercial chemical vapour deposition SiC reactor. Using Raman spectroscopy and scanning electron microscopy, we confirm that epitaxial graphene evidently forms on SiC surface above 1300 ℃ with a size of several microns. By fitting the 2D band of Raman data with two-Lorentzian function, and comparing with the published reports, we conclude that epitaxial graphene grown at 1300 ℃ is four-layer graphene.
Keywords:  SiC substrate      epitaxial graphene      Raman spectroscopy  
Received:  08 May 2011      Revised:  19 July 2011      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  78.30.-j (Infrared and Raman spectra)  
  61.48.Gh (Structure of graphene)  
Fund: Project supported by the Key Research Foundation of the Ministry of Education of China (Grant No. JY10000925016).

Cite this article: 

Wang Dang-Chao(王党朝), Zhang Yu-Ming(张玉明), Zhang Yi-Men(张义门), Lei Tian-Min(雷天民), Guo Hui(郭辉), Wang Yue-Hu(王悦湖), Tang Xiao-Yan(汤晓燕), and Wang Hang(王航) Raman analysis of epitaxial graphene grown on 4H–SiC (0001) substrate under low pressure condition 2011 Chin. Phys. B 20 128101

[1] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
[2] Wu Y Q, Ye P D, Capano M A, Xuan Y, Sui Y, Qi M, Cooper J A, Shen T, Pandey D, Prakash G and Reifenberger R 2008 Appl. Phys. Lett. 92 092102
[3] Gu G, Nie S, Feenstra R M, Devaty R P, Choyke W J, Chan W K and Kane M G 2007 Appl. Phys. Lett. 90 253507
[4] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[5] Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G and McEuen P L 2007 Science 315 490
[6] Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen M K and Morpurgo A F 2007 Nature 446 56
[7] Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J and Roth S 2007 Nature 446 60
[8] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[9] Hass J, de Heer W A and Conrad E H 2008 J. Phys.: Condens. Matter 20 323202
[10] Strudwick A J, Creeth G L, Johansson N A B and Marrows C H 2011 Appl. Phys. Lett. 98 051910
[11] Kou L, He H K and Gao C 2010 Nano-Micro Lett. 2 177
[12] de Heer W A, Berger C, Wu X S, First P N, Conrad E H, Li X B, Li T B, Sprinkle M, Hass J, Sadowski M L, Potemski M and Martinez Gérard 2007 Solid State Commun. 143 92
[13] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Röhrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B and Seyller Th 2009 Nat. Mater. 8 203
[14] Lu W J, Mitchel W C, Boeckl J J, Crenshaw T R, Collins W E, Chang R P H and Feldman L C 2009 J. Electron. Mater. 38 731
[15] Tedesco J L, Jernigan G G, Culbertson J C, Hite J K, Yang Y, Daniels K M, Myers-Ward R L, Eddy C R, Robinson J A, Trumbull K A, Wetherington M T, Campbell P M and Gaskill D K 2010 Appl. Phys. Lett. 96 222103
[16] Ferrari A C 2007 Solid State Commun. 143 47
[17] Bolen M L, Shen T, Gu J J, Colby R, Stach E A, Ye P D and Capano M A 2010 J. Electron. Mater. 39 2696
[18] Shivaraman S, Chandrashekhar M V S, Boeckl J J and Spencer M G 2009 J. Electron. Mater. 38 725
[19] Lee D S, Riedl C, Krauss B, Klitzing K V, Starke U and Smet J H 2008 Nano. Lett. 8 4320
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[3] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[6] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[7] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[8] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[9] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[10] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[11] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[12] Synthesis of ternary compound in H-S-Se system at high pressures
Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(12): 127801.
[13] Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲). Chin. Phys. B, 2021, 30(11): 117301.
[14] Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials
Yu-Jia Sun(孙宇伽), Si-Min Pang(庞思敏), and Jun Zhang(张俊). Chin. Phys. B, 2021, 30(11): 117104.
[15] Spin-phonon coupling in van der Waals antiferromagnet VOCl
Wen-Jun Wang(王文君), Xi-Tong Xu(许锡童), Jie Shen(沈洁), Zhe Wang(王哲), Shi-Le Zhang(张仕乐), and Zhe Qu(屈哲). Chin. Phys. B, 2021, 30(10): 107502.
No Suggested Reading articles found!