Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 128102    DOI: 10.1088/1674-1056/20/12/128102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Shape-controlled synthesis of diamond crystal by epitaxial growth under high pressure and high temperature conditions

Liu Xiao-Bing(刘晓兵)a), Jia Xiao-Peng(贾晓鹏)a), Zhang Zhuang-Fei(张壮飞)a),Huang Hai-Liang(黄海亮)b), Zhou Zhen-Xiang(周振祥)a), and Ma Hong-An(马红安)a)
a State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China; b Mudanjiang Normal University, Mudanjiang 157012, China
Abstract  In this paper, the diamond epitaxial growth mechanism has been studied in detail by employing several types of diamond as a seed in a catalyst-graphite system under high pressure and high temperature (HPHT) conditions. We find that the diamond nucleation, growth rate, crystal orientation, and morphology are significantly influenced by the original seeds. The smooth surfaces of seeds are beneficial for the fabrication of high-quality diamond. Our results reveal that the diamond morphology is mainly determined by the original shape of seeds in the early growth stage, but it has an adjustment process during the growth and leads to well symmetry. Additionally, we have also established the growth model for the twinned diamond grown on several seeds, and proposed the possible growth processes by tracking the particular shapes of seeds before and after treatment under HPHT conditions. These results suggest that the shape-controlled synthesis of diamond with well morphology can be realized by employing certain suitable diamond seeds. This work is expected to play an important role in the preparation of trustworthy diamond-based electronic and photonic devices.
Keywords:  diamond      nucleation      morphology      seed  
Received:  02 June 2011      Revised:  24 June 2011      Accepted manuscript online: 
PACS:  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.05.ug (Diamond)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51172089) and the Graduate Innovation Fund of Jilin University (Grant No. 20111022).

Cite this article: 

Liu Xiao-Bing(刘晓兵), Jia Xiao-Peng(贾晓鹏), Zhang Zhuang-Fei(张壮飞), Huang Hai-Liang(黄海亮), Zhou Zhen-Xiang(周振祥), and Ma Hong-An(马红安) Shape-controlled synthesis of diamond crystal by epitaxial growth under high pressure and high temperature conditions 2011 Chin. Phys. B 20 128102

[1] Kim Y D, Choi W, Wakimoto H, Usami S, Tomokage H and Ando T 1999 Appl. Phys. Lett. bf 75 3219
[2] Zhang W J, Wu Y, Wong W K, Meng X M, Chan C Y, Bello I, Lifshitz Y and Lee S T 2003 Appl. Phys. Lett. 83 3365
[3] Wang J, Chen G, Chatrathi M P, Fujishima A, Tryk D A and Shin D 2003 Anal. Chem. 75 935
[4] Shin D, Sarada B V, Tryk D A, Fujishima A and Wang J 2003 Anal. Chem. 75 530
[5] Williams I S 2007 Nature 448 880
[6] Menneken M, Nemchin A A, Geisler T, Pidgeon R T and Wilde S A 2007 Nature 448 917
[7] Pal'yanov Y N, Sokol A G, Borzdov Y M, Khokhryakov A F, Shatsky A F and Sobolev N V 1999 Diamond Relat. Mater. 8 1118
[8] Liang Z Z, Kanda H, Jia X P, Ma H A, Zhu P W, Guan Q F and Zang C Y 2006 Carbon 44 913
[9] Akaishi M, Kanda H and Yamaoka S 1993 Science 259 1592
[10] Yu R Z, Ma H A, Liang Z Z, Liu W Q, Zheng Y J and Jia X P 2008 Diamond Relat. Mater. bf 17 180
[11] Akaishi M, Kanda H and Yamaoka S 1990 J. Cryst. Growth 104 578
[12] Wang Y and Kanda H 1998 Diamond Relat. Mater. 7 57
[13] Pal'Yanov N, Sokol A G, Borzdov M and Khokhryakov A F 2002 Lithos 60 145
[14] Zhou L, Jia X P, Ma H A, Zheng Y J and Li Y T 2009 Chin. Phys. B 18 333
[15] Zhou L, Jia X P, Ma H A, Zheng Y J and Li Y T 2008 Chin. Phys. B 17 4665
[16] Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R and Sumanasekera G U 2007 Science 318 1424
[17] Gu L P, Tang C J, Jiang X F and Pinto J L 2011 Chin. Phys. B 20 058104
[18] Chen M J, Liang Y C, Yuan Y J and Li D 2008 Chin. Phys. B 17 4260
[19] Sung J C, Sung M and Sung E 2006 Thin Solid Films 498 212
[20] Schwarz S, Rottmair C, Hirmke J, Rosiwal S and Singer R F 2004 J. Cryst. Growth bf 271 425
[21] Hirmke J, Schwarz S, Rottmair C, Rosiwal S M and Singer R F 2006 Diamond Relat. Mater. 15 536
[22] Liu X B, Jia X P, Guo X K, Zhang Z F and Ma H A 2010 Crystal Growth and Design 10 2895
[23] Ishizaka H, Umezawa H, Taniuchi H, Arima T, Fujihara N, Tachiki M and Kawarada H 2002 Diamond Relat. Mater. 11 378
[24] Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y and Jia X P 2011 Chin. Phys. B 20 028103
[25] Geis M W, Twichell J C, Efremow N N, Krohn K and Lyszczarz T M 1996 Appl. Phys. Lett. 68 2294
[26] Qin G P, Kong C Y, Ruan H B, Huang G J, Cui Y T and Fang L 2010 Chin. Phys. B bf 19 117501
[27] Rao T N, Yagi I, Miwa T, Tryk D A and Fujishima A 1999 Anal. Chem. 71 2506
[28] Koizumi S, Teraji T and Kanda H 2000 Diamond Relat. Mater. 9 935
[29] Ku T K, Chen S H, Yang C D, She N J, Wang C C, Chen C F, Hsieh I J and Cheng H C 1996 IEEE Electron Device Lett. 17 208
[30] Koizumi S, Kamo M, Sato Y, Mita S, Sawabe A, Reznik A, Uzan-Saguy C and Kalish R 1998 Diamond Relat. Mater. 7 540
[31] Okano K, Kiyota H, Iwasaki T, Nakamura Y, Akiba Y, Kurosu T, Iida M and Nakamura T 1990 Appl. Phys. A: Mater. Sci. & Proce. 51 344
[32] Delclos S, Dorignac D, Phillipp F, Silva F and Gicquel A 1998 Diamond Relat. Mater. 7 222
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[4] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[5] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[6] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[7] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[8] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[9] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[10] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[11] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[12] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[13] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[14] Impact of microsecond-pulsed plasma-activated water on papaya seed germination and seedling growth
Deng-Ke Xi(席登科), Xian-Hui Zhang(张先徽), Si-Ze Yang(杨思泽), Seong Shan Yap(叶尚姗), Kenji Ishikawa(石川健治), Masura Hori (堀勝), and Seong Ling Yap(叶尚凌). Chin. Phys. B, 2022, 31(12): 128201.
[15] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
No Suggested Reading articles found!