Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 108102    DOI: 10.1088/1674-1056/20/10/108102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of thickness on the microstructure of GaN films on Al2O3 (0001) by laser molecular beam epitaxy

Liu Ying-Ying(刘莹莹), Zhu Jun(朱俊), Luo Wen-Bo(罗文博), Hao Lan-Zhong(郝兰众), Zhang Ying(张鹰), and Li Yan-Rong(李言荣)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that the growth mode of GaN transformed from three-dimensional (3D) island mode to two-dimensional (2D) layer-by-layer mode with the increase of thickness. This paper investigates the interfacial strain relaxation of GaN films by analysing their diffraction patterns. Calculation shows that the strain is completely relaxed when the thickness reaches 15 nm. The surface morphology evolution indicates that island merging and reduction of the island-edge barrier provide an effective way to make GaN films follow a 2D layer-by-layer growth mode. The 110-nm GaN films with a 2D growth mode have smooth regular hexagonal shapes. The X-ray diffraction indicates that thickness has a significant effect on the crystallized quality of GaN thin films.
Keywords:  reflection high energy electron diffraction      thin films      laser molecular beam epitaxy      GaN      sapphires  
Received:  03 March 2011      Revised:  18 April 2011      Accepted manuscript online: 
PACS:  81.16.Mk (Laser-assisted deposition)  
  61.05.jh (Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED))  
  68.55.-a (Thin film structure and morphology)  
  78.55.Cr (III-V semiconductors)  
Fund: Project supported by the Major State Basic Research Development Program of China (Grant No. 61363) and the National Natural Science Foundation of China (Grant Nos. 50772019 and 61021061).

Cite this article: 

Liu Ying-Ying(刘莹莹), Zhu Jun(朱俊), Luo Wen-Bo(罗文博), Hao Lan-Zhong(郝兰众), Zhang Ying(张鹰), and Li Yan-Rong(李言荣) Effect of thickness on the microstructure of GaN films on Al2O3 (0001) by laser molecular beam epitaxy 2011 Chin. Phys. B 20 108102

[1] Yang Z Q and Xu Z Z 1997 Acta Phys. Sin. 46 606 (in Chinese)
[2] Nakamura S and Fasol G 2001 Meas. Sci. Technol. 12 755
[3] Mukai T, Nagahama S, Sano M, Yanamoto T, Morita D, Mitani T, Narukawa Y, Yamamoto S, Niki I, Yamada M, Sonobe S, Shioji S, Deguchi K, Naitou T, Tamaki H, Murazaki Y and Kameshima M 2003 Phys. Stat. Sol. 200 52
[4] Luo Y, Guo W P, Shao J P, Hu H, Han Y J, Xue S, Wang L, Sun C Z and Hao Z B 2004 Acta Phys. Sin. 53 2720 (in Chinese)
[5] Feng Q, Gu W P, Hao Y, Ma X H, Wang C and Zhang J C 2009 Acta Phys. Sin. 58 511 (in Chinese)
[6] Albrecht J D, Wang R P, Ruden P P, Farahmand M and Brennan K F 1998 J. Appl. Phys. 83 4777
[7] Shur M S 1998 Sol. Stat. Electron. 42 2131
[8] Mivazaki T, Fujimaki T and Adachi S 2001 J. Appl. Phys. 89 8316
[9] Wakejima A, Ota K, Nakayama T, Ando Y, Okamoto Y, Miyamoto H, Kamiya S and Suzuki A 2007 Appl. Phys. Lett. 90 3504
[10] Lei T, Ludwig K F and Moustakas T D 1993 J. Appl. Phys. 74 4430
[11] Muto H, Asano T, Wang R P and Kusumori T 2005 Appl. Phys. Lett. 87 2106
[12] Zhang C G, Bian L F, Chen W D and Hsu C C 2007 J. Cryst. Growth 299 268
[13] Vispute1 R D, Talyansky V, Trajanovic Z, Choopun S, Downes M, Sharma R P, Venkatesan T, Wood M C, Lareau R T, Jones K A and Iliadis A A 1997 Appl. Phys. Lett. 71 102
[14] Huang T F, Marshall A, Spruytte S and Harris Jr J S 1999 J. Cryst. Growth 200 362
[15] Vispute R D, Choopun S, Enck R, Patel A, Talyansky V, Sharma R P, Venkatesan T, Sarney W L, Salamanca-Riba L, Andronescu S N, Iliadis A A and Jones K A 1999 J. Electron. Mater. 28 275
[16] Rupp T, Henn G and Schröder H 2002 Appl. Surf. Sci. 186 429
[17] Ohtaa J, Fujiokaa H, Takahashia H, Sumiyab M and Oshima M 2001 J. Cryst. Growth 233 779
[18] Kuo C H, Fu Y K, Kuo C W, Pan C J and Chi G C 2007 Appl. Phys. Lett. 90 2109
[19] Huang G S, Lu T C, Yao H H, Kuo H C, Wang S C, Lin C W and Chang L 2006 Appl. Phys. Lett. 88 1904
[20] Chandrasekaran R, Moustakas T D, Ozcan A S, Ludwig K F, Zhou L and Smith D J 2010 J. Appl. Phys. 108 3501
[21] Cazzanelli M, Cole D, Versluijs J, Donegan J F and Lunney J G 1999 Mater. Sci. Eng. B 59 98
[22] Cazzanelli M, Vinegoni C, Cole D, Lunney J G, Middleton P G, Trager-Cowan C, O'Donnell K P and Pavesi L 1999 Mater. Sci. Eng. B 59 137
[23] Wei X H, Zhang Y, Li J L, Deng X W, Liu X Z, Jiang S W, Zhu J and Li Y R 2005 Acta Phys. Sin. 54 217 (in Chinese)
[24] Zhang C, Ye H, Zhang L, Huang P Y R and Liu X 2009 Acta Phys. Sin. 58 7765 (in Chinese)
[25] Zhu J, Zhou L X, Huang W, Li Y Q and Li Y R 2009 J. Cryst. Growth 311 3300
[26] Zhang Z Y and Lagally M G 1997 Science 276 377
[27] Zhang Z Y and Lagally M G 1994 Phys. Rev. Lett. 72 693
[28] Böttcher T, Einfeldt S, Figge S, Chierchia R, Heinke H, Hommel D and Speck J S 2001 Appl. Phys. Lett. 78 1976
[29] Wu X H, Fini P, Keller S, Tarsa E J, Heying B, Mishra U K, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 35 1648
[30] Amanullah F M, Pratap K J and Hari H V 1998 Mater. Sci. Eng. B 52 93
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[4] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[10] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[11] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[12] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[13] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[14] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[15] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
No Suggested Reading articles found!