INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effect of thickness on the microstructure of GaN films on Al2O3 (0001) by laser molecular beam epitaxy |
Liu Ying-Ying(刘莹莹), Zhu Jun(朱俊)†, Luo Wen-Bo(罗文博), Hao Lan-Zhong(郝兰众), Zhang Ying(张鹰), and Li Yan-Rong(李言荣) |
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
Abstract Heteroepitaxial GaN films are grown on sapphire (0001) substrates using laser molecular beam epitaxy. The growth processes are in-situ monitored by reflection high energy electron diffraction. It is revealed that the growth mode of GaN transformed from three-dimensional (3D) island mode to two-dimensional (2D) layer-by-layer mode with the increase of thickness. This paper investigates the interfacial strain relaxation of GaN films by analysing their diffraction patterns. Calculation shows that the strain is completely relaxed when the thickness reaches 15 nm. The surface morphology evolution indicates that island merging and reduction of the island-edge barrier provide an effective way to make GaN films follow a 2D layer-by-layer growth mode. The 110-nm GaN films with a 2D growth mode have smooth regular hexagonal shapes. The X-ray diffraction indicates that thickness has a significant effect on the crystallized quality of GaN thin films.
|
Received: 03 March 2011
Revised: 18 April 2011
Accepted manuscript online:
|
PACS:
|
81.16.Mk
|
(Laser-assisted deposition)
|
|
61.05.jh
|
(Low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED))
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
Fund: Project supported by the Major State Basic Research Development Program of China (Grant No. 61363) and the National Natural Science Foundation of China (Grant Nos. 50772019 and 61021061). |
Cite this article:
Liu Ying-Ying(刘莹莹), Zhu Jun(朱俊), Luo Wen-Bo(罗文博), Hao Lan-Zhong(郝兰众), Zhang Ying(张鹰), and Li Yan-Rong(李言荣) Effect of thickness on the microstructure of GaN films on Al2O3 (0001) by laser molecular beam epitaxy 2011 Chin. Phys. B 20 108102
|
[1] |
Yang Z Q and Xu Z Z 1997 Acta Phys. Sin. 46 606 (in Chinese)
|
[2] |
Nakamura S and Fasol G 2001 Meas. Sci. Technol. 12 755
|
[3] |
Mukai T, Nagahama S, Sano M, Yanamoto T, Morita D, Mitani T, Narukawa Y, Yamamoto S, Niki I, Yamada M, Sonobe S, Shioji S, Deguchi K, Naitou T, Tamaki H, Murazaki Y and Kameshima M 2003 Phys. Stat. Sol. 200 52
|
[4] |
Luo Y, Guo W P, Shao J P, Hu H, Han Y J, Xue S, Wang L, Sun C Z and Hao Z B 2004 Acta Phys. Sin. 53 2720 (in Chinese)
|
[5] |
Feng Q, Gu W P, Hao Y, Ma X H, Wang C and Zhang J C 2009 Acta Phys. Sin. 58 511 (in Chinese)
|
[6] |
Albrecht J D, Wang R P, Ruden P P, Farahmand M and Brennan K F 1998 J. Appl. Phys. 83 4777
|
[7] |
Shur M S 1998 Sol. Stat. Electron. 42 2131
|
[8] |
Mivazaki T, Fujimaki T and Adachi S 2001 J. Appl. Phys. 89 8316
|
[9] |
Wakejima A, Ota K, Nakayama T, Ando Y, Okamoto Y, Miyamoto H, Kamiya S and Suzuki A 2007 Appl. Phys. Lett. 90 3504
|
[10] |
Lei T, Ludwig K F and Moustakas T D 1993 J. Appl. Phys. 74 4430
|
[11] |
Muto H, Asano T, Wang R P and Kusumori T 2005 Appl. Phys. Lett. 87 2106
|
[12] |
Zhang C G, Bian L F, Chen W D and Hsu C C 2007 J. Cryst. Growth 299 268
|
[13] |
Vispute1 R D, Talyansky V, Trajanovic Z, Choopun S, Downes M, Sharma R P, Venkatesan T, Wood M C, Lareau R T, Jones K A and Iliadis A A 1997 Appl. Phys. Lett. 71 102
|
[14] |
Huang T F, Marshall A, Spruytte S and Harris Jr J S 1999 J. Cryst. Growth 200 362
|
[15] |
Vispute R D, Choopun S, Enck R, Patel A, Talyansky V, Sharma R P, Venkatesan T, Sarney W L, Salamanca-Riba L, Andronescu S N, Iliadis A A and Jones K A 1999 J. Electron. Mater. 28 275
|
[16] |
Rupp T, Henn G and Schröder H 2002 Appl. Surf. Sci. 186 429
|
[17] |
Ohtaa J, Fujiokaa H, Takahashia H, Sumiyab M and Oshima M 2001 J. Cryst. Growth 233 779
|
[18] |
Kuo C H, Fu Y K, Kuo C W, Pan C J and Chi G C 2007 Appl. Phys. Lett. 90 2109
|
[19] |
Huang G S, Lu T C, Yao H H, Kuo H C, Wang S C, Lin C W and Chang L 2006 Appl. Phys. Lett. 88 1904
|
[20] |
Chandrasekaran R, Moustakas T D, Ozcan A S, Ludwig K F, Zhou L and Smith D J 2010 J. Appl. Phys. 108 3501
|
[21] |
Cazzanelli M, Cole D, Versluijs J, Donegan J F and Lunney J G 1999 Mater. Sci. Eng. B 59 98
|
[22] |
Cazzanelli M, Vinegoni C, Cole D, Lunney J G, Middleton P G, Trager-Cowan C, O'Donnell K P and Pavesi L 1999 Mater. Sci. Eng. B 59 137
|
[23] |
Wei X H, Zhang Y, Li J L, Deng X W, Liu X Z, Jiang S W, Zhu J and Li Y R 2005 Acta Phys. Sin. 54 217 (in Chinese)
|
[24] |
Zhang C, Ye H, Zhang L, Huang P Y R and Liu X 2009 Acta Phys. Sin. 58 7765 (in Chinese)
|
[25] |
Zhu J, Zhou L X, Huang W, Li Y Q and Li Y R 2009 J. Cryst. Growth 311 3300
|
[26] |
Zhang Z Y and Lagally M G 1997 Science 276 377
|
[27] |
Zhang Z Y and Lagally M G 1994 Phys. Rev. Lett. 72 693
|
[28] |
Böttcher T, Einfeldt S, Figge S, Chierchia R, Heinke H, Hommel D and Speck J S 2001 Appl. Phys. Lett. 78 1976
|
[29] |
Wu X H, Fini P, Keller S, Tarsa E J, Heying B, Mishra U K, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 35 1648
|
[30] |
Amanullah F M, Pratap K J and Hari H V 1998 Mater. Sci. Eng. B 52 93
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|