Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 108103    DOI: 10.1088/1674-1056/20/10/108103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhanced etching of silicon dioxide guided by carbon nanotubes in HF solution

Zhao Hua-Bo(赵华波)a), Ying Alex Yi-Qun(应轶群)a), Yan Feng(严峰)a), Wei Qin-Qin(魏芹芹)c), Fu Yun-Yi(傅云义)c), Zhang Yan(张岩)b), Li Yan(李彦)b), Wei Zi-Jun(魏子钧)c), and Zhang Zhao-Hui(张朝晖)a)
a State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; b Key Laboratory for Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; c Department of Microelectronics, Peking University, Beijing 100871, China
Abstract  This paper describes a new method to create nanoscale SiO2 pits or channels using single-walled carbon nanotubes (SWNTs) in an HF solution at room temperature within a few seconds. Using aligned SWNT arrays, a pattern of nanoscale SiO2 channels can be prepared. The nanoscale SiO2 patterns can also be created on the surface of three-dimensional (3D) SiO2 substrate and even the nanoscale trenches can be constructed with arbitrary shapes. A possible mechanism for this enhanced etching of SiO2 has been qualitatively analysed using defects in SWNTs, combined with H3O+ electric double layers around SWNTs in an HF solution.
Keywords:  carbon nanotube      silicon dioxide      HF wet etching      defects and electric double layers  
Received:  11 May 2011      Revised:  09 June 2011      Accepted manuscript online: 
PACS:  81.16.Rf (Micro- and nanoscale pattern formation)  
  82.45.Jn (Surface structure, reactivity and catalysis)  
  81.65.Cf (Surface cleaning, etching, patterning)  
  82.37.Gk (STM and AFM manipulations of a single molecule)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 90406007, 61076069, 60776053, and 10434010) and the National Basic Research Program of China (Grant No. 2007CB936800).

Cite this article: 

Zhao Hua-Bo(赵华波), Ying Alex Yi-Qun(应轶群), Yan Feng(严峰), Wei Qin-Qin(魏芹芹), Fu Yun-Yi(傅云义), Zhang Yan(张岩), Li Yan(李彦), Wei Zi-Jun(魏子钧), and Zhang Zhao-Hui(张朝晖) Enhanced etching of silicon dioxide guided by carbon nanotubes in HF solution 2011 Chin. Phys. B 20 108103

[1] Kumar A and Whitesides G M 1993 Appl. Phys. Lett. 63 2002
[2] Hong S and Mirkin C A 2000 Science 288 1808
[3] Gates B D, Xu Q, Stewart M, Ryan D, Willson C G and Whitesides G M 2005 Chem. Rev. 105 1171
[4] Delamarche E, Geissler M, Wolf H and Michel B 2002 J. Am. Chem. Soc. 124 3834
[5] Parviz B A, Ryan D and Whitesides G M 2003 IEEE Trans. Adv. Packag. 26 233
[6] Shim W Y, Braunschweig A B, Liao X, Chai J, Lim J K, Zheng G F and Mirkin C A 2011 Nature 469 516
[7] International Technology Roadmap for Semiconductors 2010 edition
[8] Zhou W W, Ding L, Yang S W and Liu J 2010 J. Am. Chem. Soc. 132 336
[9] Kang S J, Kocabas C, Kim H S, Cao Q, Meitl M A, Khang D Y and Rogers J A 2007 Nano Lett. 7 3343
[10] Simmons T J, Hashim D, Vajtai R and Ajayan P M 2007 J. Am. Chem. Soc. 129 10088
[11] Schmidt M S, Nielsen T, Madsen D N, Kristensen A and Boggild P 2005 Nanotechnology 16 750
[12] Vijayaraghavan A, Kanzaki K, Suzuki S, Kobayashi Y, Inokawa H, Ono Y, Kar S and Ajayan P M 2005 Nano Lett. 5 1575
[13] Hye R and Hee C C 2007 Nat. Nanotechnol. 2 267
[14] Liu H T, Steigerwald M L and Nuckolls C 2009 J. Am. Chem. Soc. 131 17034
[15] Zhou W W, Han Z Y, Wang J Y, Zhang Y, Jin Z, Sun X, Zhang Y W, Yan C H and Li Y 2006 Nano Lett. 6 2987
[16] Zhang Y, Zhou W, Jin Z, Ding L, Zhang Z, Liang X and Li Y 2008 Chem. Mater. 20 7521
[17] Ang P K, Chen W, Wee A T S and Loh K P 2008 J. Am. Chem. Soc. 130 14392
[18] Trancik J E, Calabrese B S and Hone J 2008 Nano Lett. 8 982
[19] Fan Y W, Goldsmith B R and Collins P G 2005 Nat. Mater. 4 906
[20] Hoefer M and Bandaru P R 2010 J. Appl. Phys. 108 034308
[21] Li L Y, Yang Y, Yang G L, Chen X M, Hsiao B S, Chu B, Spanier J E and Li C Y 2006 Nano Lett. 6 1007
[22] Hoefer M and Bandaru P R 2009 Appl. Phys. Lett. 95 183108
[23] Dimiev A, Kosynkin D V, Sinitskii A, Slesarev A, Sun Z Z and Tour J M 2011 Science 331 1168
[24] Chai Y, Xiao Z and Chan P 2010 Nanotechnology 21 235705
[25] Shulaker M M, Wei H, Patil N, Provine J, Chen H Y, Wong H S P and Mitra S 2011 Nano. Lett. 11 1881
[26] Liu Z F, Jiao L Y, Yao Y G, Xian X J and Zhang J 2010 Adv. Mater. 22 2285
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[6] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[7] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[8] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[9] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[10] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
[11] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[12] Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi. Chin. Phys. B, 2020, 29(7): 078501.
[13] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[14] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[15] Full filling of mesoporous carbon nanotubes by aqueous solution at room temperature
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(3): 036801.
No Suggested Reading articles found!