Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 076102    DOI: 10.1088/1674-1056/19/7/076102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Preparation and NO2-gas sensing property of individual β-Ga2O3 nanobelt

Ma Hai-Lin(马海林)a)† , Fan Duo-Wang(范多旺)a), and Niu Xiao-Shan(牛晓山)b)
a National Engineering Research Center of Green Coating Technology and Equipment, Lanzhou Jiaotong University, Lanzhou 730070, China; b Lanzhou Dacheng Vacuum Technology Co. Ltd., Lanzhou 730070, China
Abstract  Monoclinic gallium oxide (β-Ga2O3) nanobelts are synthesized from gallium and oxygen by thermal evaporation in an argon atmosphere and their NO2 sensing properties are studied at room temperature. Electron microscopy studies show that the nanobelts have breadths ranging from 30 to 50 nm and lengths up to tens of micrometers. Both the x-ray diffraction (XRD) and the selected are electron diffraction (SAED) examinations indicate that β-Ga2O3 nanobelts have grown into single crystals. Room temperature NO2 sensing tests show that the current of individual β-Ga2O3 nanobelt decreases quickly, and then gently when the NO2 concentration increases from low to high. It is caused by the NO2 molecule chemisorption and desorption processes in the surface of β-Ga2O3 nanobelt.
Keywords:  gallium oxide      sensors      nanobelts      NO2  
Received:  19 November 2009      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
  68.43.Mn (Adsorption kinetics ?)  

Cite this article: 

Ma Hai-Lin(马海林), Fan Duo-Wang(范多旺), and Niu Xiao-Shan(牛晓山) Preparation and NO2-gas sensing property of individual β-Ga2O3 nanobelt 2010 Chin. Phys. B 19 076102

[1] Ma H L, Su Q, Lan W and Liu X Q 2008 Acta Phys. Sin. 57 7322 (in Chinese)
[2] Wu X C, Song W H, Huang W D, Pu M H, Zhao B, Sun Y P and Du J J 2000 Chem. Phys. Lett. 5 328
[3] Yang H, Yue S L, Wang Z L and Wang Q 2006 J. Phys. Chem. B 101 800
[4] Feng P and Xue X Y 2006 Appl. Phys. Lett. 89 112114
[5] Rustum R, Hill V G and Osborn E F 1952 J. Am. Chem. Soc. 74 719
[6] Tippins H H 1965 Phys. Rev. A 140 316
[7] Nogales E, Mendez B and Piqueras J 2005 Appl. Phys. Lett. 86 113112
[8] Collins R J and Thomas D G 1958 Phys. Rev. 388 112
[9] Bene R and Pinter Z 2001 Vacuum 61 275
[10] Bezryadin A, Lau C N and Tinkham M 2000 Nature 404 971
[11] Webster P J, Ziebeck K R A, Town S L and Peak M S 1984 Philos. Mag. B 49 295
[12] Harwig T and Kellendonk F 1978 J. Solid State Chem. 24 255
[13] Huang Y, Yue S L, Wang Z L, Wang Q, Shi C Y, Xu Z, Bai X D, Tang C H and Gu C Z 2006 J. Phys. Chem. B 110 796
[14] Anita V, Saito N and Takai O 2006 Thin Solid Films 506 364
[15] Heo Y W, Tien L C, Norton D P and Pearton S J 2004 Appl. Phys. Lett. 85 11
[17] Zhu J, Zhu G P Lu C G, Xu C X and Cui Y P 2009 Chin. Phys. Lett. 26 014204 endfootnotesize
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[3] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[4] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[5] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[6] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[7] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[8] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[9] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[10] Research of NO2 vertical profiles with look-up table method based on MAX-DOAS
Yingying Guo(郭映映), Suwen Li(李素文), Fusheng Mou(牟福生), Hexiang Qi(齐贺香), and Qijin Zhang(张琦锦). Chin. Phys. B, 2022, 31(1): 014212.
[11] Study on a novel vertical enhancement-mode Ga2O3 MOSFET with FINFET structure
Liangliang Guo(郭亮良), Yuming Zhang(张玉明), Suzhen Luan(栾苏珍), Rundi Qiao(乔润迪), and Renxu Jia(贾仁需). Chin. Phys. B, 2022, 31(1): 017304.
[12] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[13] GEANT4 simulation study of over-response phenomenon of fiber x-ray sensor
Bin Zhang(张彬), Tian-Ci Xie(谢天赐), Zhuang Qin(秦壮), Hao-Peng Li(李昊鹏), Song Li(李松), Wen-Hui Zhao(赵文辉), Zi-Yin Chen(陈子印), Jun Xu(徐军), Elfed Lewis, and Wei-Min Sun(孙伟民). Chin. Phys. B, 2021, 30(4): 048701.
[14] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[15] Design of NO2 photoacoustic sensor with high reflective mirror based on low power blue diode laser
Hua-Wei Jin(靳华伟), Pin-Hua Xie(谢品华), Ren-Zhi Hu(胡仁志), Chong-Chong Huang(黄崇崇), Chuan Lin(林川), Feng-Yang Wang(王凤阳). Chin. Phys. B, 2020, 29(6): 060701.
No Suggested Reading articles found!