Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 060701    DOI: 10.1088/1674-1056/ab8376
GENERAL Prev   Next  

Design of NO2 photoacoustic sensor with high reflective mirror based on low power blue diode laser

Hua-Wei Jin(靳华伟)1,2,6, Pin-Hua Xie(谢品华)1,3,4,5, Ren-Zhi Hu(胡仁志)1,2, Chong-Chong Huang(黄崇崇)1,2, Chuan Lin(林川)1, Feng-Yang Wang(王凤阳)1,2
1 Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences(CAS), Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361000, China;
4 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
5 University of Chinese Academy of Sciences, Beijing 100049, China;
6 Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Anhui University of Science and Technology, Huainan 232001, China
Abstract  An NO2 photoacoustic sensor system with a high reflective mirror based on a low power blue diode laser is developed in this work. The excitation power is enhanced by increasing the number of reflections. Comparing with a traditional photoacoustic system, the pool constant is improved from 300.24 (Pa·cm)/W to 1450.64 (Pa·cm)/W, and the signal sensitivity of the photoacoustic sensor is increased from 0.016 μV/ppb to 0.2562 μV/ppb. The characteristics of temperature and humidity of the new photoacoustic sensor are also obtained, and the algorithm is adjusted to provide a quantitative response and drift of the resonance frequency. The results of this research provide a new method and concept for further developing the NO2 photoacoustic sensors.
Keywords:  NO2      photoacoustic sensor      high reflective mirror      blue diode laser  
Received:  09 February 2020      Revised:  13 March 2020      Accepted manuscript online: 
PACS:  07.88.+y (Instruments for environmental pollution measurements)  
  07.60.Rd (Visible and ultraviolet spectrometers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  43.58.Kr (Spectrum and frequency analyzers and filters; acoustical and electrical oscillographs; photoacoustic spectrometers; acoustical delay lines and resonators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91644107, 61575206, 51904009, and 41905130), the National Key Research and Development Program of China (Grant Nos. 2017YFC0209401, 2017YFC0209403, and 2017YFC0209902), and the Outstanding Young Talents Program of Anhui University, China (Grant No. gxyq2019022).
Corresponding Authors:  Pin-Hua Xie, Ren-Zhi Hu     E-mail:  phxie@aiofm.ac.cn;rzhu@aiofm.ac.cn

Cite this article: 

Hua-Wei Jin(靳华伟), Pin-Hua Xie(谢品华), Ren-Zhi Hu(胡仁志), Chong-Chong Huang(黄崇崇), Chuan Lin(林川), Feng-Yang Wang(王凤阳) Design of NO2 photoacoustic sensor with high reflective mirror based on low power blue diode laser 2020 Chin. Phys. B 29 060701

[1] Miklos A, Hess P and Bozoki Z 2001 Rev. Sci. Instrum. 72 1937
[2] Sim J Y, Ahn C G, Huh C, et al. 2017 Sensors 17 80
[3] Yin X K, Dong L, Wu H P, et al. 2017 Opt. Express 25 32581
[4] Yin X K, Dong L, Wu H P, et al. 2017 Sens. Actuators B-Chem. 247 329
[5] Jin H W, Hu R Z, Xie P H, et al. 2019 Acta Phys. Sin. 68 070703 (in Chinese)
[6] Jin H W, Hu R Z, Xie P H, et al. 2019 Spectrosc. Spect. Anal. 39 1993 (in Chinese)
[7] Wang L, Wang W G and Ge M F 2012 J. Environ. Sci. 24 1759
[8] Ma Y F, He Y, Yu X, et al. 2016 Sens. Actuators B-Chem. 233 388
[9] Elefante A, Giglio M, Sampaolo A, et al. 2019 Anal. Chem. 91 12866
[10] Li S Z, Dong L, Wu H P, et al. 2019 Anal. Chem. 91 5834
[11] Zhang C X, Liu C, Hu Q H, et al. 2019 Light: Sci. & Appl. 8 100
[12] Yin X K, Wu H P, Dong L, et al. 2020 ACS Sens. 5 549
[13] Song W, Guo G D, Wang J, et al. 2019 ACS Sens. 4 2697
[14] Ajtai T, Kiss-Albert G, Utry N, et al. 2019 J. Environ. Sci. 83 96
[15] De Cumis M S, Viciani S, Borri S, et al. 2014 Opt. Express 22 28222
[16] Pourhashemi A, Farrell R M, Cohen D A, et al. 2015 Appl. Phys. Lett. 106 111105
[17] Pourhashemi A, Farrell R M, Cohen D A, et al. 2016 Electron. Lett. 52 2003
[18] Fuchs H, Dube W P, Lerner B M, et al. 2009 Environ. Sci. & Technol. 43 7831
[19] Li J L, Wang W G, Li K, et al. 2019 J. Environ. Sci. 76 227
[20] Li Z Y, Hu R Z, Xie P H, et al. 2019 Atmos. Meas. Tech. 12 3223
[21] Singh S, Fiddler M N, Smith D, et al. 2014 Aerosol Sci. Technol. 48 1345
[22] Taha Y M, Odame-Ankrah C A and Osthoff H D 2013 Chem. Phys. Lett. 582 15
[23] Washenfelder R A, Wagner N L, Dube W P, et al. 2011 Environ. Sci. & Technol. 45 2938
[24] Chen K, Gong Z F and Yu Q X 2018 Sens. Actuators A-Physical 274 184
[25] He Q, Zheng C T, Lou M H, et al. 2018 Opt. Express 26 15436
[26] He Y, Ma Y F, Tong Y, et al. 2018 Opt. Express 26 9666
[27] Pan Y F, Dong L, Wu H P, et al. 2019 Atmos. Meas. Tech. 12 1905
[28] Patimisco P, Borri S, Galli I, et al. 2015 Analyst 140 736
[29] Wojtas J, Gluszek A, Hudzikowski A, et al. 2017 Sensors 17 513
[30] Voigt S, Orphal J and Burrows J P 2002 J. Photochem. Photobiol. A-Chem. 149 1
[31] Rothman L S, Gordon I E, Barber R J, et al. 2010 J. Quant. Spectrosc. & Radiat. Transfer 111 2139
[32] Chen L W, Ondarts M, Outin J, et al. 2018 J. Environ. Sci. 74 58
[33] Deng Y Y, Li J, Li Y Q, et al. 2019 J. Environ. Sci. 75 334
[34] Dong L, Tittel F K, Li C G, et al. 2016 Opt. Express 24 A528
[35] Zeninari V, Kapitanov V A, Courtois D, et al. 1999 Infrared Phys. Technol. 40 1
[36] Zheng H D, Lou M, Dong L, et al. 2017 Opt. Express 25 16761
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[3] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[4] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[5] TiO2/SnO2 electron transport double layers with ultrathin SnO2 for efficient planar perovskite solar cells
Can Li(李灿), Hongyu Xu(徐宏宇), Chongyang Zhi(郅冲阳), Zhi Wan(万志), and Zhen Li(李祯). Chin. Phys. B, 2022, 31(11): 118802.
[6] Research of NO2 vertical profiles with look-up table method based on MAX-DOAS
Yingying Guo(郭映映), Suwen Li(李素文), Fusheng Mou(牟福生), Hexiang Qi(齐贺香), and Qijin Zhang(张琦锦). Chin. Phys. B, 2022, 31(1): 014212.
[7] Room temperature NO2-sensing properties of hexagonal tungsten oxide nanorods
Yaqiao Wu(武雅乔), Ming Hu(胡明), Yuming Tian(田玉明). Chin. Phys. B, 2017, 26(2): 020701.
[8] Zn-Cu-codoped SnO2 nanoparticles:Structural, optical, and ferromagnetic behaviors
Syed Zulfiqar, Zainab Iqbal, Jianguo Lü(吕建国). Chin. Phys. B, 2017, 26(12): 126104.
[9] Preparation and room temperature NO2-sensing performances of porous silicon/V2O5 nanorods
Wen-Jun Yan(闫文君), Ming Hu(胡明), Ji-Ran Liang(梁继然), Deng-Feng Wang(王登峰), Yu-Long Wei(魏玉龙), Yu-Xiang Qin(秦玉香). Chin. Phys. B, 2016, 25(4): 040702.
[10] Optoelectronic properties of SnO2 thin films sprayed at different deposition times
Allag Abdelkrim, Saâd Rahmane, Ouahab Abdelouahab, Attouche Hafida, Kouidri Nabila. Chin. Phys. B, 2016, 25(4): 046801.
[11] Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles
Rajwali Khan, Fang Ming-Hu (方明虎). Chin. Phys. B, 2015, 24(12): 127803.
[12] Observation of tropospheric NO2 by airborne multi-axis differential optical absorption spectroscopy in the Pearl River Delta region, south China
Xu Jin (徐晋), Xie Pin-Hua (谢品华), Si Fu-Qi (司福祺), Li Ang (李昂), Wu Feng-Cheng (吴丰成), Wang Yang (王杨), Liu Jian-Guo (刘建国), Liu Wen-Qing (刘文清), Andreas Hartl, Chan Ka Lok. Chin. Phys. B, 2014, 23(9): 094210.
[13] Comparing different light-emitting diodes as light sources for long path differential optical absorption spectroscopy NO2 and SO2 measurements
Chan Ka-Lok (陈嘉乐), Ling Liu-Yi (凌六一), Andreas Hartl, Zheng Ni-Na (郑尼娜), Gerrit Kuhlmann, Qin Min (秦敏), Sun You-Wen (孙友文), Xie Pin-Hua (谢品华), Liu Wen-Qing (刘文清), Mark Wenig. Chin. Phys. B, 2012, 21(11): 119301.
[14] Density functional theory study of NO2-sensing mechanisms of pure and Ti-doped WO3 (002) surfaces
Hu Ming(胡明), Wang Wei-Dan(王巍丹), Zeng Jing(曾晶), and Qin Yu-Xiang(秦玉香) . Chin. Phys. B, 2011, 20(10): 102101.
[15] Preparation and NO2-gas sensing property of individual β-Ga2O3 nanobelt
Ma Hai-Lin(马海林), Fan Duo-Wang(范多旺), and Niu Xiao-Shan(牛晓山). Chin. Phys. B, 2010, 19(7): 076102.
No Suggested Reading articles found!