Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 057203    DOI: 10.1088/1674-1056/19/5/057203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Comparative study of different properties of GaN films grown on(0001) sapphire using high and low temperature AlN interlayers

Xue Jun-Shuai(薛军帅), Hao Yue(郝跃), Zhang Jin-Cheng(张进成), and Ni Jin-Yu(倪金玉)
School of Microelectronics, Xidian University, Xi'an 710071, China;Key Laboratory of Wide-Band Gap Semiconductors and Devices, Xi'an 710071, China
Abstract  Comparative study of high and low temperature AlN interlayers and their roles in the properties of GaN epilayers prepared by means of metal organic chemical vapour deposition on (0001) plane sapphire substrates is carried out by high resolution x-ray diffraction, photoluminescence and Raman spectroscopy. It is found that the crystalline quality of GaN epilayers is improved significantly by using the high temperature AlN interlayers, which prevent the threading dislocations from extending, especially for the edge type dislocation. The analysis results based on photoluminescence and Raman measurements demonstrate that there exist more compressive stress in GaN epilayers with high temperature AlN interlayers. The band edge emission energy increases from 3.423 eV to 3.438 eV and the frequency of Raman shift of $E_{2 }$(TO) moves from 571.3 cm$^{ - 1}$ to 572.9 cm$^{ - 1}$ when the temperature of AlN interlayers increases from 700 $^{\circ}$C to 1050 $^{\circ}$C. It is believed that the temperature of AlN interlayers effectively determines the size, the density and the coalescence rate of the islands, and the high temperature AlN interlayers provide large size and low density islands for GaN epilayer growth and the threading dislocations are bent and interactive easily. Due to the threading dislocation reduction in GaN epilayers with high temperature AlN interlayers, the approaches of strain relaxation reduce drastically, and thus the compressive stress in GaN epilayers with high temperature AlN interlayers is high compared with that in GaN epilayers with low temperature AlN interlayers.
Keywords:  GaN      AlN interlayers      high temperature  
Received:  18 September 2009      Revised:  04 November 2009      Accepted manuscript online: 
PACS:  68.55.A- (Nucleation and growth)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  78.55.Cr (III-V semiconductors)  
  61.05.cp (X-ray diffraction)  
  78.30.Fs (III-V and II-VI semiconductors)  
  68.60.Bs (Mechanical and acoustical properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~60736033 and 60676048).

Cite this article: 

Xue Jun-Shuai(薛军帅), Hao Yue(郝跃), Zhang Jin-Cheng(张进成), and Ni Jin-Yu(倪金玉) Comparative study of different properties of GaN films grown on(0001) sapphire using high and low temperature AlN interlayers 2010 Chin. Phys. B 19 057203

[1] Lei S Y, Shen B and Zhang G Y 2008 Acta Phys. Sin. 57 2386 (in Chinese)
[2] He Z, Kang Y, Tang Y W, Li X and Fang J X 2006 Chin. Phys. 15 1325
[3] Jena D, Gossard A C and Mishra U K 2000 Appl. Phys. Lett. 76 1707
[4] Li D S, Yu H B, Jia H Q, Huang Q and Zhou J M 2004 Appl. Phys. Lett. 96 1111
[5] Amano H, Iwaya M, Kashima T, Katsuragawa M, Akasaki I, Han J, Hearne S, Floro J A, Chason E and Figiel J 1998 Jpn. J. Appl. Phys. Part 2 37 L1540
[6] Kikuchi A, Yamada T, Nakamura S, Kusakabe K, Sugihara D and Kishina K 2001 Mater. Sci. Eng. B 82 12
[7] Bai J, Wang T, Parbrook P J and Cullis A G 2006 Appl. Phys. Lett. 89 131925
[8] Kim D K 2008 J. Mater. Sci.: Mater. Electron. 19 471
[9] Marchand H, Wu X H, Ibbetson J P, Fini P T, Kozodoy P, Keller S, Speck J S, DenBaars S P and Mishra U K 1998 Appl. Phys. Lett. 73 747
[10] Hong S J and Kim K 1996 Appl. Phys. Lett. 89 042101
[11] Gay P, Hirsch P B and Kelly 1953 Acta Metall. 1 315
[12] Wu X H, Kapolnek D, Tarsa E J, Heying B, Keller S, Keller B P, Mishra U K, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 68 1371
[13] Ni J Y, Hao Y, Zhang J C, Duan H T and Zhang J F 2009 Acta Phys. Sin. 58 4925 (in Chinese)
[14] Kisielowski C, Kr\"{Uger J, Ruvimov S, Suski T, Ager.III J W, Jones E, Liliental-Weber Z, Rubin M, Weber E R, Bremser M D and Davis R F 1996 Phys. Rev. B 54 17745
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[4] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[5] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[6] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[7] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[8] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[9] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[10] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[11] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[12] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[13] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[14] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[15] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
No Suggested Reading articles found!