Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 057202    DOI: 10.1088/1674-1056/19/5/057202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of time-periodic potentials on electronic transport in double-well structure

Li Chun-Lei(李春雷)†ger and Xu Yan(徐燕)
College of Elementary Educational, Capital Normal University, Beijing 100048, China
Abstract  Within the framework of the Floquet theorem, we have investigated single-electron photon-assisted tunneling in a double-well system using the transfer matrix technique. The transmission probability displays satellite peaks on the both sides of main resonance peaks and these satellite peaks originate from emission or absorption photons. The single-electron resonance tunneling can be control through changing applied harmonically potential positions, such as driven potential in wells, in barriers, or in whole double-well system. This advantage should be useful in the optimization of the parameters of a transmission device.
Keywords:  photon-assisted tunneling      transmission probability      quantum well  
Received:  12 September 2009      Revised:  02 December 2009      Accepted manuscript online: 
PACS:  73.23.Hk (Coulomb blockade; single-electron tunneling)  
  73.21.Fg (Quantum wells)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  

Cite this article: 

Li Chun-Lei(李春雷) and Xu Yan(徐燕) Influence of time-periodic potentials on electronic transport in double-well structure 2010 Chin. Phys. B 19 057202

[1] Dayem A H and Martin R J 1962 Phys. Rev. Lett. 8 246
[2] Kouwenhoven L P, Johnson A T, van der Vaart N C, Harmans C J P M and Foxon C T 1991 Phys. Rev. Lett. 67 1626
[3] Kouwenhoven L P, Jauhar S, Orenstein J, McEuen P L, Nagamune Y, Motohisa J and Sakaki H 1994 Phys. Rev. Lett. 73 3443
[4] Oosterkamp T H, Kouwenhoven L P, Koolen A E A, VanderVaart N C and Harmans C J P M 1997 Phys. Rev. Lett. 78 1536
[5] Fujisawa T and Tarucha S 1997 Superlattices Microstruct. 21 247
[6] van der Wiel W G, de Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1
[7] Kierig E, Schnorrberger U, Schietinger A, Tomkovic J and Oberthaler M K 2008 Phys. Rev. Lett. 100 190405
[8] Cai W, Zheng T F, Hu P, Lax M, Shum K and Alfano R R 1990 Phys. Rev. Lett. 65 104
[9] Lefebvre R and Moiseyev N 2004 Phys. Rev. A 69 062105
[10] Sun Q F, Wang J and Lin T H 1998 Phys. Rev. B 58 13007
[11] Zhao H, Liao W H, and Zhao G H 2007 Chin. Phys. 16 1748
[12] I\~{narrea J, Platero G and Tejedor C 1994 Phys. Rev. B 50 4581
[13] Burmeister G and Maschke K 1998 Phys. Rev. B 57 13050
[14] Hagmann M J 1995 Appl. Phys. Lett. 66 789
[15] Lu J D, Shao L, Hou Y L and Dai H M 2007 Chin. Phys. 16 3080
[16] Wagner M 1995 Phys. Rev. A 51 798
[17] del Valle C P, Lefebvre R and Atabek O 1999 Phys. Rev. A 59 3701
[18] Wagner M 1998 Phys. Rev. B 57 111899
[19] Li S S, Chang K and Xia J B 2003 Phys. Rev. B 68 245306
[20] Li S S, Abliz A, Yang F H, Niu Z C, Feng S L and Xia J B 2003 J. Appl. Phys. 94 5402
[21] Sun Q F, Wang J and Lin T H 2000 Phys. Rev. B 61 12643
[22] Smyth J F, Awschalom D D, Samarth N, Luo H and Furdyna J K 1992 Phys. Rev. B 46 4340
[23] Zhang C X, Nie Y H and Liang J Q 2008 Chin. Phys. B 17 2670
[24] Aguado R and Platero G 1997 Phys. Rev. B 55 12860
[25] Pu H, Zhang W and Meystre P 2002 Phys. Rev. Lett. 89 090401
[26] Toropov A A, Sedova I V, Sorokin S V, Terent'ev Y V, Ivchenko E L and Ivanov S V 2005 Phys. Rev. B 71 195312
[27] Leo J 1989 Phys. Rev. B 39 5947
[28] Klymenko M V, Safonov I M, Shulika O V and Sukhoivanov I A 2008 Phys. Stal. Sol. (b) 245 1589
[29] Li W and Reichl L E 1999 Phys. Rev. B 60 15732
[30] Yong G, Li Y C, Kong X J and Wei C W 1994 Phys. Rev. B 50 17249
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[3] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[4] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[5] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[6] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[7] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[8] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[9] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[10] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[11] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
[12] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[13] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[14] Improvement of TE-polarized emission in type-Ⅱ InAlN-AlGaN/AlGaN quantum well
Yi Li(李毅), Youhua Zhu(朱友华), Meiyu Wang(王美玉), Honghai Deng(邓洪海), Haihong Yin(尹海宏). Chin. Phys. B, 2019, 28(9): 097801.
[15] Non-perturbative multiphoton excitation studies in an excitonic coupled quantum well system using high-intensity THz laser fields
Monica Gambhir, Vinod Prasad. Chin. Phys. B, 2019, 28(8): 087803.
No Suggested Reading articles found!