Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 037202    DOI: 10.1088/1674-1056/19/3/037202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermoelectric-transport in metal/graphene/metal hetero-structure

Hu Hao(胡昊)a), Cai Jin-Ming(蔡金明)a), Zhang Chen-Dong(张晨栋) a), Gao Min(高敏)a), Pan Yi(潘毅)a), Du Shi-Xuan(杜世萱)a), Sun Qing-Feng(孙庆丰)a), Niu Qian(牛谦) b), Xie Xin-Cheng(谢心澄)a)c), and Gao Hong-Jun(高鸿钧)a)†
a Beijing National Laboratory of Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; b Department of Physics, University of Texas at Austin, USA; c Department of Physics, Oklahoma State University, Stillwater,Oklahoma 74078, USA
Abstract  We investigate the thermoelectric-transport properties of metal/graphene/metal hetero-structure. We use a single band tight-binding model to present the two-dimensional electronic band structure of graphene. Using the Landauer--Butticker formula and taking the coupling between graphene and the two electrodes into account, we can calculate the thermoelectric potential and current versus temperature. It is found that in spite of metal electrodes, the carrier type of graphene determines the electron motion direction driven by the difference in temperature between the two electrodes, while for n type graphene, the electrons move along the thermal gradient, and for p type graphene, the electrons move against the thermal gradient.
Keywords:  graphene      Landauer--Butticker formula      thermoelectricity      hetero-structure  
Received:  19 August 2009      Revised:  27 October 2009      Accepted manuscript online: 
PACS:  73.40.Rw (Metal-insulator-metal structures)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~60621061), and the National Basic Research Program of China (Grant Nos.~2006CB921305 and 2009CB929103).

Cite this article: 

Hu Hao(胡昊), Cai Jin-Ming(蔡金明), Zhang Chen-Dong(张晨栋), Gao Min(高敏), Pan Yi(潘毅), Du Shi-Xuan(杜世萱), Sun Qing-Feng(孙庆丰), Niu Qian(牛谦), Xie Xin-Cheng(谢心澄), and Gao Hong-Jun(高鸿钧) Thermoelectric-transport in metal/graphene/metal hetero-structure 2010 Chin. Phys. B 19 037202

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I,Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[2] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[3] Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M,Parpia J M, Craighead H G and McEuen P L 2007 Science 315 490
[4] Cheianov V V, Fal'ko V and Altshuler B L 2007 Science 315 1252
[5] Williams J R, DiCarlo L and Marcus C M 2007 Science 317 638
[6] Abanin D A and Levitov L S 2007 Science 317 641
[7] Yan Q M, Huang B, Yu J, Zheng F W, Wu J, Gu B L, Liu F and Duan W H 2007 Nano Lett. 7 1469
[8] Dragoman D and Dragoman M 2007 Appl. Phys. Lett. 91 203116
[9] Balandin A A, Ghosh S, Bao W Z, Calizo Irene, Teweldebrhan D, Miao F andLau C N 2008 Nano Lett. 902
[10] Vazquez de Parga A L, Calleja F, Borca B, Passeggi Jr. M C G, HinarejosJ J, Guinea F and Miranda R 2008 Phys. Rev. Lett. 100 056807
[11] Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
[12] Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F and Gao H J 2008 Adv. Mater. 20 1
[13] Coraux J, N'Diaye A T, Busse C and Michely T 2008 Nano Lett. 8 565
[14] Pletikosic I, Kralj M, Pervan P, Brako R, Coraux J, N'Diaye A T, BusseC and Michely T 2009 Phys. Rev. Lett. 102 056808
[15] Katsnelson M I 2007 Materials Today 10 20
[16] Datta S 1995 Electronic Transport in Mesoscopic Systems (London: Cambridge University Press) p148
[17] Wang B, Bocquet M L, Marchini S, Gunther S and Wintterlin J 2008 Phys.Chem. Chem. Phys.10 3530
[18] Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li G and Gao H J 2009 Chin. Phys. B 18 3008
[19] Lyeo Ho-Ki, Khajetoorians A A, Shi L, Pipe K P, Ram R J, Shakouri A andShih C K 2004 Science 303 816
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[12] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[13] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
No Suggested Reading articles found!