Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 117306    DOI: 10.1088/1674-1056/19/11/117306
RAPID COMMUNICATION Prev   Next  

Effect of film thickness on interfacial barrier of manganite-based heterojunctions

Xie Yan-Wu (谢燕武)a), Guo De-Feng (郭得峰)a), Sun Ji-Rong(孙继荣)b), and Shen Bao-Gen(沈保根)b)
a State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Interfacial barrier is a key factor that determines the performances of heterojunctions. In this work, we study the effect of manganite film thickness on the effective interfacial barrier for La0.67Sr0.33MnO3/Nb:SrTiO3 junctions. The barrier is extracted from the forward current--voltage characteristics. Our results demonstrate that the barrier decreases gradually from ~0.85 eV to ~0.60 eV when the film thickness decreases from 150 nm to 2 nm. The overall value of the barrier is only about 50% of the corresponding one determined from the photovoltaic effect.
Keywords:  manganite      heterojunction      thickness  
Received:  15 June 2010      Revised:  20 July 2010      Accepted manuscript online: 
PACS:  68.55.-a (Thin film structure and morphology)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.50.Pz (Photoconduction and photovoltaic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10804094, 50832007, 50721001 and 50821001), and the Natural Science Foundation of Hebei Province, China (Grant No. A2009000339).

Cite this article: 

Xie Yan-Wu (谢燕武), Guo De-Feng (郭得峰), Sun Ji-Rong(孙继荣), and Shen Bao-Gen(沈保根) Effect of film thickness on interfacial barrier of manganite-based heterojunctions 2010 Chin. Phys. B 19 117306

[1] Tanaka H, Zhang J and Kawai T 2002 wxPhys. Rev. Lett.88 027204
[2] Mitra C, Raychaudhuri P, Dorr K, Muller K H, Schulz L, Oppeneer P M and Wirth S 2003 wxPhys. Rev. Lett.90 017202
[3] Lang P L, Zhao Y G, Yang B, Zhang X L, Li J, Wang P and Zheng D N 2005 wxAppl. Phys. Lett.87 053502
[4] Lu H B, Dai S Y, Chen Z H, Zhou Y L, Cheng B L, Jin K J, Liu L F, Yang G Z and Ma X L 2005 wxAppl. Phys. Lett.86 032502
[5] Xie Y W, Shen B G and Sun J R 2008 wxChin. Phys. B17 2272
[6] Sun J R, Shen B G, Sheng Z G and Sun Y P 2004 wxAppl. Phys. Lett.85 3375
[7] Sawa A, Fujii T, Kawasaki M and Tokura Y 2005 wxAppl. Phys. Lett.86 112508
[8] Postma F M, Ramaneti R, Bamerjee T, Gokcan H, Hap E, Blank D H A, Jansen R and Lodder J C 2004 wxJ. Appl. Phys.95 7324
[9] Minohara M, Ohkubo I, Kumigashira H and Oshima M 2007 wxAppl. Phys. Lett.90 132123
[10] Lv W M, Wei A D, Sun J R, Chen Y Z and Shen B G 2009 wxAppl. Phys. Lett.94 082506
[11] Tokura Y and Nagaosa N 2000 wxScience288 462
[12] Sun J Z, Abraham D W, Rao R A and Eom C B 1999 wxAppl. Phys. Lett.74 3017
[13] Xie Y W, Sun J R, Han Y N and Shen B G 2007 wxAppl. Phys. Lett.91 262515
[14] Sze S M 1981 wxPhysics of Semiconductor Devices 2nd ed. (New York: Wiley) Chap.9
[15] Shimizu T and Okushi H 1999 wxJ Appl. Phys.85 7244
[16] Saifi M A and Cross L E 1970 wxPhys. Rev. B2 677
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[4] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[5] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[6] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[7] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[8] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[9] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[10] Erratum to “Accurate determination of film thickness by low-angle x-ray reflection”
Ming Xu(徐明), Tao Yang(杨涛), Wenxue Yu(于文学), Ning Yang(杨宁), Cuixiu Liu(刘翠秀), Zhenhong Mai(麦振洪), Wuyan Lai(赖武彦), and Kun Tao(陶琨). Chin. Phys. B, 2022, 31(9): 099901.
[11] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[12] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[13] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[14] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[15] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
No Suggested Reading articles found!