Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 106102    DOI: 10.1088/1674-1056/19/10/106102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

STM observation of pit formation and evolution during the epitaxial growth of Si on Si(001) surface

Xu Mao-Jie(徐茂杰)a), Jeyanthinath Mayandib), Wang Xue-Sen(王学森)b), Jia Jin-Feng(贾金锋)a),Xue Qi-Kun(薛其坤)c), and Dou Xiao-Ming(窦晓鸣)a)d)
a Institute of Optical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; b Department of Physics, National University of Singapore, Lower Kent Ridge Road, 119260, Singapore; c Department of Physics, Tsinghua University, Beijing 100084, China; d School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract  Pit formation and surface morphological evolution in Si(001) homoepitaxy are investigated by using scanning tunneling microscopy. Anti-phase boundary is found to give rise to initial generation of pits bound by bunched DB steps. The terraces break up and are reduced to a critical nucleus size with pit formation. Due to anisotropic kinetics, a downhill bias diffusion current, which is larger along the dimer rows through the centre area of the terrace than through the area close to the edge, leads to the prevalence of pits bound by {101} facets. Subsequent annealing results in a shape transition from {101}-faceted pits to multi-faceted pits.
Keywords:  pit      facet      homoepitaxy      Si(001)  
Received:  09 February 2010      Revised:  13 May 2010      Accepted manuscript online: 
PACS:  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
  68.35.Dv (Composition, segregation; defects and impurities)  
  68.35.Fx (Diffusion; interface formation)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.55.A- (Nucleation and growth)  
  81.40.Gh (Other heat and thermomechanical treatments)  
Fund: Project supported by the grants from the National University of Singapore (R-144-000-069-101) and the SERC of Singapore (R-144-000-088-305).

Cite this article: 

Xu Mao-Jie(徐茂杰), Jeyanthinath Mayandi, Wang Xue-Sen(王学森), Jia Jin-Feng(贾金锋),Xue Qi-Kun(薛其坤), and Dou Xiao-Ming(窦晓鸣) STM observation of pit formation and evolution during the epitaxial growth of Si on Si(001) surface 2010 Chin. Phys. B 19 106102

[1] Politi P, Grenet G, Marty A, Ponchet A and Villain J 2000 Phys. Rep. 324 271
[2] Wingerden J, Halen E C, Werner K, Scholte P and Tuinstra F 1996 Surf. Sci. 352--354 641
[3] Wu F, Jaloviar S G, Savage D E and Lagally M G 1993 Phys. Rev. Lett. 71 4190
[4] Lee N E, Cahill D G and Greene J E 1996 Phys. Rev. B 53 7876
[5] Schelling C, Springholz G and Schäffler F 1999 Phys. Rev. Lett. 83 995
[6] Mo Y W and Lagally M G 1991 Surf. Sci. 248 313
[7] Mo Y W, Swartzentruber B S, Kariotis R, Webb M B and Lagally M G 1989 Phys. Rev. Lett. 63 2393
[8] Li J L, Liang X J, Jia J F, Liu X, Wang J Z, Wang E G and Xue Q K 2001 Appl. Phys. Lett. 79 2826
[9] Neave J H, Dobson P J, Joyce B A and Zhang J 1985 Appl. Phys. Lett. 47 100
[10] Swartzentruber B S, Mo Y W and Lagally M G 1991 Appl. Phys. Lett. 58 822
[11] Hamers R J, Kõhler V K and Demuth J E 1990 J. Vac. Sci. Technol. A 8 195
[12] Bronikowski M J, Wang Y and Hamers R J 1993 Phys. Rev. B 48 12361
[13] Zandvliet H J W, Zoethout E, Wulfhekel W and Poelsema B 2001 Surf. Sci. 482 391
[14] Hirayama H, Hiroi M and Ide T 1993 Phys. Rev. B 48 17331
[15] Oshiyama A 1995 Phys. Rev. Lett. 74 130
[16] Tersoff J, Denier van der Gon A W and Tromp R M 1994 Phys. Rev. Lett. 72 266
[17] Theis W and Tromp R M 1996 Phys. Rev. Lett. 76 2770
[18] Huang Y and Zhu X Y 2004 Chin. Phys. 13 725
[19] Xu T B, Zhu P R, Zhou J S, Li D Q, Ren T Q, Zhao Q T, Liu X D and Liu J T 1995 Acta Phys. Sin. (Overseas Edn.) 4 118
[20] Wang C Q, Jia Y, Ma B X, Wang S Y, Qin Z, Wang F, Wu L K and Li X J 2005 Acta Phys. Sin. 54 4313 (in Chinese)
[21] Sanduijav B, Matei D, Chen G, Schäffler F, Bauer G and Springholz G 2008 Thin Solid Films 517 293
[22] Akazawa H 2008 Appl. Phys. Express 1 071402
[23] Songmuang R, Kiravittaya S and Schmidt O G 2003 Appl. Phys. Lett. 82 2892
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[4] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[7] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[11] Porous AlN films grown on C-face SiC by hydride vapor phase epitaxy
Jiafan Chen(陈家凡), Jun Huang(黄俊), Didi Li(李迪迪), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(7): 076802.
[12] Phase-field modeling of faceted growth in solidification of alloys
Hui Xing(邢辉), Qi An(安琪), Xianglei Dong(董祥雷), and Yongsheng Han(韩永生). Chin. Phys. B, 2022, 31(4): 048104.
[13] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[14] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[15] Cluster dynamics modeling of niobium and titanium carbide precipitates in α-Fe and γ-Fe
Nadezda Korepanova, Long Gu(顾龙), Mihai Dima, and Hushan Xu(徐瑚珊). Chin. Phys. B, 2022, 31(2): 026103.
No Suggested Reading articles found!