Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(6): 2222-2228    DOI: 10.1088/1674-1056/17/6/047
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structure and optical properties of LiXH3 and XLiH3 (X=Be, B or C)

San Xiao-Jiao(伞晓娇), He Zhi(何志), Ma Yan-Ming(马琰铭), Cui Tian(崔田), Liu Bing-Bing(刘冰冰), and Zou Guang-Tian(邹广田)
National Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  The equilibrium lattice constant, the cohesive energy and the electronic properties of light metal hydrides LiXH3 and XLiH3 (X=Be, B or C) with perovskite lattice structures have been investigated by using the pseudopotential plane-wave method. Large energy gap of LiBeH3 indicates that it is insulating, but other investigated hydrides are metallic. The pressure-induced metallization of LiBeH3 is found at about 120GPa, which is attributed to the increase of Be-p electrons with pressure. The electronegativity of the p electrons of X atom is responsible for the metallicity of the investigated LiXH3 hydrides, but the electronegativity of the s electrons of X atom plays an important role in the metallicity of the investigated XLiH3 hydrides. In order to deeply understand the investigated hydrides, their optical properties have also been investigated. The optical absorption of either LiBeH3 or BeLiH3 has a strong peak at about 5eV, showing that their optical responses are qualitatively similar. It is also found that the optical responses of other investigated hydrides are stronger than those of LiBeH3 and BeLiH3 in lower energy ranges, especially in the case of CLiH3.
Keywords:  plane-wave method      metal hydrides      electronic structure      optical properties  
Received:  09 November 2007      Revised:  25 December 2007      Accepted manuscript online: 
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
  74.20.-z (Theories and models of superconducting state)  
  74.25.Gz (Optical properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10574053 and 10674053), the 2004 NCET and 2003 EYTP of MOE of China, the National Basic Research Program of China (Grant Nos 2005CB724400 and 2001CB711201), and the Cultivati

Cite this article: 

San Xiao-Jiao(伞晓娇), He Zhi(何志), Ma Yan-Ming(马琰铭), Cui Tian(崔田), Liu Bing-Bing(刘冰冰), and Zou Guang-Tian(邹广田) Electronic structure and optical properties of LiXH3 and XLiH3 (X=Be, B or C) 2008 Chin. Phys. B 17 2222

[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[7] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[8] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[9] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[10] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[11] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[12] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[13] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[14] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!