CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic domain structures in ultrathin Bi2Te3/CrTe2 heterostructures |
Tirui Xia(夏体瑞)1, Xiaotian Yang(杨笑天)1, Yifan Zhang(张逸凡)2,3, Xinqi Liu(刘馨琪)1,3, Xinyu Cai(蔡新雨)1, Chang Liu(刘畅)4, Qi Yao(姚岐)1,3,†, Xufeng Kou(寇煦丰)2,3,‡, and Wenbo Wang(王文波)1,3,§ |
1 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 2 School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China; 3 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China; 4 Department of Materials Science, Fudan University, Shanghai 200438, China |
|
|
Abstract Chromium tellurium compounds are important two-dimensional van der Waals ferromagnetic materials with high Curie temperature and chemical stability in air, which is promising for applications in spintronic devices. Here, high-quality spin-orbital-torque (SOT) device, Bi$_{2}$Te$_{3}$/CrTe$_{2}$ heterostructure was epitaxially grown on Al$_{2}$O$_{3 }$ (0001) substrates. Anomalous Hall measurements indicate the existence of strong ferromagnetism in this device with the CrTe$_{2}$ thickness down to 10 nm. In order to investigate its micromagnetic structure, cryogenic magnetic force microscope (MFM) was utilized to measure the magnetic domain evolutions at various temperatures and magnetic fields. The virgin domain state of the device shows a worm-like magnetic domain structure with the size around 0.6 μm-0.8 μm. Larger irregular-shape magnetic domains (>1 μm) can be induced and pinned, after the field is increased to coercive field and ramped back to low fields. The temperature-dependent MFM signals exhibit a nice mean-field-like ferromagnetic transition with Curie temperature around 201.5 K, indicating a robust ferromagnetic ordering. Such a device can be potentially implemented in future magnetic memory technology.
|
Received: 27 February 2024
Revised: 09 May 2024
Accepted manuscript online:
|
PACS:
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
75.60.-d
|
(Domain effects, magnetization curves, and hysteresis)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
85.70.-w
|
(Magnetic devices)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403000), the National Natural Science Foundation of China (Grant No. 12374161), and the Fund from the Science and Technology Commission of Shanghai Municipality (Grant No. 21PJ410800). X. F. Kou acknowledges the support from the National Natural Science Foundation of China (Grant No. 92164104), the RisingStar Program of Shanghai (Grant No. 21QA1406000), and the Open Fund of State Key Laboratory of Infrared Physics. |
Corresponding Authors:
Qi Yao, Xufeng Kou, Wenbo Wang
E-mail: yaoqi@shanghaitech.edu.cn;kouxf@shanghaitech.edu.cn;wangwb1@shanghaitech.edu.cn
|
Cite this article:
Tirui Xia(夏体瑞), Xiaotian Yang(杨笑天), Yifan Zhang(张逸凡), Xinqi Liu(刘馨琪), Xinyu Cai(蔡新雨), Chang Liu(刘畅), Qi Yao(姚岐), Xufeng Kou(寇煦丰), and Wenbo Wang(王文波) Magnetic domain structures in ultrathin Bi2Te3/CrTe2 heterostructures 2024 Chin. Phys. B 33 087504
|
[1] Gong C, Li L, Li Z L, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [2] Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X D 2017 Nature 546 270 [3] Geim A K and Grigorieva I V 2013 Nature 499 419 [4] Geisenhof F R, Winterer F, Seiler A M, Lenz J, Xu T Y, Zhang F and Weitz R T 2021 Nature 598 53 [5] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [6] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P 2021 Nature 590 249 [7] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900 [8] Wu H, Zhang W, Yang L, Wang J, Li J, Li L, Gao Y, Zhang L, Du J, Shu H and Chang H 2021 Nat. Commun. 12 5688 [9] Zhao D P, Zhang L G, Malik I A, Liao M H, Cui W Q, Cai X Q, Zheng C, Li L X, Hu X P, Zhang D, Zhang J X, Chen X, Jiang W J and Xue Q K 2018 Nano Research 11 3116 [10] Wang M S, Kang L X, Su J W, Zhang L M, Dai H W, Cheng H, Han X T, Zhai T Y, Liu Z and Han J B 2020 Nanoscale 12 16427 [11] Huang M, Wang S, Wang Z, Liu P, Xiang J, Feng C, Wang X, Zhang Z, Wen Z, Xu H, Yu G, Lu Y, Zhao W, Yang S A, Hou D and Xiang B 2021 ACS Nano 15 9759 [12] Purbawati A, Coraux J, Vogel J, Hadj-Azzem A, Wu N, Bendiab N, Jegouso D, Renard J, Marty L, Bouchiat V, Sulpice A, Aballe L, Foerster M, Genuzio F, Locatelli A, Mentes T, Han Z, Sun X, Nunez-Regueiro M and Rougemaille N 2020 ACS Appl. Mater. Interfaces 12 30702 [13] Sun X, Li W, Wang X, Sui Q, Zhang T, Wang Z, Liu L, Li D, Feng S, Zhong S, Wang H, Bouchiat V, Nunez Regueiro M, Rougemaille N, Coraux J, Purbawati A, Hadj-Azzem A, Wang Z, Dong B, Wu X, Yang T, Yu G, Wang B, Han Z, Han X and Zhang Z 2020 Nano Research 13 3358 [14] Fabre F, Finco A, Purbawati A, Hadj-Azzem A, Rougemaille N, Coraux J, Philip I and Jacques V 2021 Phys. Rev. Mater. 5 034008 [15] Xian J J, Wang C, Nie J H, Li R, Han M J, Lin J H, Zhang W H, Liu Z Y, Zhang Z M, Miao M P, Yi Y F, Wu S W, Chen X D, Han J B, Xia Z C, Ji W and Fu Y S 2022 Nat. Commun. 13 257 [16] Zhang X, Lu Q, Liu W, Niu W Q, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X, Du J, He L, Zhang R, Bian G and Xu Y 2021 Nat. Commun. 12 2492 [17] Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Sendeku M G, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W and He J 2020 Nano Lett. 20 3130 [18] Zhong Y, Peng C, Huang H L, Guan D D, Hwang J, Hsu K H, Hu Y, Jia C J, Moritz B, Lu D H, Lee J S, Jia J F, Devereaux T P, Mo S K and Shen Z X 2023 Nat. Commun. 14 5340 [19] Zhang C H, Liu C, Zhang J W, Yuan Y Y, Wen Y, Li Y, Zheng D X, Zhang Q, Hou Z P, Yin G, Liu K, Peng Y and Zhang X X 2023 Adv. Mater. 35 2205967 [20] Li B L, Deng X, Shu W N, Cheng X, Qian Q, Wan Z, Zhao B, Shen X H, Wu R X, Shi S, Zhang H M, Zhang Z C, Yang X D, Zhang J W, Zhong M Z, Xia Q L, Li J, Liu Y, Liao L, Ye Y, Dai L, Peng Y, Li B and Duan X D 2022 Mater. Today 57 66 [21] Zhang L Z, Zhang A L, He X D, Ben X W, Xiao Q L, Lu W L, Chen F, Feng Z J, Cao S X, Zhang J C and Ge J Y 2020 Phys. Rev. B 101 214413 [22] Tang B J, Wang X W, Han M J, Xu X D, Zhang Z W, Zhu C, Cao X, Yang Y M, Fu Q D, Yang J Q, Li X J, Gao W B, Zhou J D, Lin J H and Liu Z 2022 Nat. Electron. 5 224 [23] Chen C, Chen X, Wu C, Wang X, Ping Y, Wei X, Zhou X, Lu J, Zhu L, Zhou J, Zhai T and Han J 2022 Adv. Mater. 34 2107512 [24] Zhu W, Ma Z W, Yan J, Zheng G H, Cheng L, Xu X L, Meng Z, Shen L, An K Y, Zhou Ch, Qu Zh, Luo X, Sun Y P, Zhang Z J and Sheng Z G 2020 J. Magn. Magn. Mater. 512 167019 [25] Wang Y, Yan, J, Li J, Wang S, Song M, Song J, Li Z, Chen K, Qin Y, Ling L, Du H, Cao L, Luo X, Xiong Y and Sun Y 2019 Phys. Rev. B 100 024434 [26] Ma X, Huang M, Wang S S, Liu P, Zhang Y, Lu Y L and Xiang B 2023 ACS Appl. Electron. Mater. 5 2838 [27] Ren Q D, Lai K, Chen J H, Yu X X and Dai J Y 2023 Chin. Phys. B 32 027201 [28] Yuan Z Y, Yang F Z, Lv B Q, Huang Y B, Qian T, Xu J P and Ding H 2024 Chin. Phys. B 33 026802 [29] Yang H, Valenzuela S O, Chshiev M, Couet S, Dieny B, Dlubak B, Fert A, Garello K, Jamet M, Jeong D E, Lee K, Lee T, Martin M B, Kar G S, Seneor P, Shin H J and Roche S 2022 Nature 606 663 [30] Liu X Q, Huang P Y, XIA Y Y Y, Gao L, Liao Li Y, Cui B S, Backes D, van der Laan G, Hesjedal T, Ji Y C, Chen P, Zhang Y F, Wu F, Wang M X, Zhang J W, Yu G Q, Song C, Chen Y L, Liu Z K, Yang Y M, Peng Y, Li G, Yao Q and Kou X F 2023 Adv. Funct. Mater. 33 2304454 [31] Ou Y, Yanez W, Xiao R, Stanley M, Ghosh S, Zheng B, Jiang W, Huang Y S, Pillsbury T, Richardella A, Liu C X, Low T, Crespi V H, Mkhoyan K A and Samarth N 2022 Nat. Commun. 13 2972 [32] Zhang X Q, Ambhire S C, Lu Q S, Niu W, Cook J, Jiang J D S, Hong D S, Alahmed L, He L, Zhang R, Xu Y B, Zhang S S L, Li P and Bian G 2021 ACS Nano. 15 15710 [33] Chen J S, Wang L J, Zhang M, Zhou L, Zhang R N, Jin L P, Wang X S, Qin H L, Qiu Y, Mei J W, Ye F, Xi B, He H T, Li B and Wang G 2019 Nano Lett. 19 6144 [34] Jeon J H, Na H R, Kim H, Lee S, Song S, Kim J, Park S, Kim J, Noh H, Kim G, Jerng S K and Chun S H 2022 ACS Nano 16 8974 [35] Wang W B, Mundy J A, Brooks C M, Moyer J A, Holtz M E, Muller D A, Schlom D G and Wu W D 2017 Phys. Rev. B 95 134443 [36] Lau Y C, Betto D, Rode K, Coey J M D and Stamenov P 2016 Nat. Nanotechnol. 11 758 [37] Fukami S, Zhang C L, DuttaGupta S, Kurenkov A and Ohno H 2016 Nat. Mater. 15 535 [38] Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548 [39] Liu L, Qin Q, Lin W N, Li C, Xie Q, He S, Shu X, Zhou C H, Lim Z, Yu J, Lu W, Li M, Yan X B, Pennycook S J and Chen J S 2019 Nat. Nanotechnol. 14 939 [40] Liang Y H, Yi D, Nan T X, Liu S S, Zhao L, Zhang Y J, Chen H T, Xu T, Dai M Y, Hu J M, Xu B, Shi J, Jiang W J, Yu R and Lin Y H 2023 Nat. Commun. 14 5458 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|