Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 024701    DOI: 10.1088/1674-1056/ad989c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Neural network analysis for prediction of heat transfer of aqueous hybrid nanofluid flow in a variable porous space with varying film thickness over a stretched surface

Abeer S Alnahdi1,† and Taza Gul2,3
1 Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia;
2 Mathematics Department, City University of Science and Information Technology, Peshawar, 25000, Pakistan;
3 DoST-Directorate General of Science and Technology Khyber Pakhtunkhwa, Peshawar, 25000, Pakistan
Abstract  The high thermal conductivity of the nanoparticles in hybrid nanofluids results in enhanced thermal conductivity associated with their base fluids. Enhanced heat transfer is a result of this high thermal conductivity, which has significant applications in heat exchangers and engineering devices. To optimize heat transfer, a liquid film of Cu and TiO$_2$ hybrid nanofluid behind a stretching sheet in a variable porous medium is being considered due to its importance. The nature of the fluid is considered time-dependent and the thickness of the liquid film is measured variable adjustable with the variable porous space and favorable for the uniform flow of the liquid film. The solution of the problem is acquired using the homotopy analysis method HAM, and the artificial neural network ANN is applied to obtain detailed information in the form of error estimation and validations using the fitting curve analysis. HAM data is utilized to train the ANN in this study, which uses Cu and TiO$_2$ hybrid nanofluids in a variable porous space for unsteady thin film flow, and it is used to train the ANN. The results indicate that Cu and TiO$_2$ play a greater role in boosting the rate.
Keywords:  thin film of Cu and TiO$_{2}$ hybrid nanofluids      variable porous space      unsteady stretching sheet      viscous dissipation      heat transfer optimization      artificial neural network  
Received:  29 July 2024      Revised:  27 September 2024      Accepted manuscript online: 
PACS:  47.15.gm (Thin film flows)  
  47.15.Cb (Laminar boundary layers)  
  44.20.+b (Boundary layer heat flow)  
  44.05.+e (Analytical and numerical techniques)  
Corresponding Authors:  Abeer S Alnahdi     E-mail:  asalnahdi@imamu.edu.sa

Cite this article: 

Abeer S Alnahdi and Taza Gul Neural network analysis for prediction of heat transfer of aqueous hybrid nanofluid flow in a variable porous space with varying film thickness over a stretched surface 2025 Chin. Phys. B 34 024701

[1] Neeraas B O, Fredheim A O and Aunan B 2004 Int. J. Heat Mass Transfer 47 3565
[2] Weinstein S J and Ruschak K J 2004 Annu. Rev. Fluid Mech. 36 29
[3] Ibrahim H T, Qiang H, Al-Rekabi W S and Qiqi Y 2012 Pakistan Journal of Nutrition 11 610
[4] Nicolella C, Van Loosdrecht M C M and Heijnen J J 2000 Journal of biotechnology 80 33
[5] Vo T Q, Park B, Park C and Kim B 2015 J. Mech. Sci. Technol. 29 1681
[6] Craster R V and Matar O K 2009 Rev. Mod. Phys. 81 1131
[7] Khan N S, Islam S, Gul T, Khan I, Khan W and Ali L 2018 Alexandria Engineering Journal 57 1019
[8] Ali L, Islam S, Gul T, Khan I, Dennis C C, Khan W and Khan A 2017 Appl. Sci. 7 404
[9] Mebarek-Oudina F, Preeti Sabu A S, Vaidya H, Lewis R W, Areekara S and Ismail A I 2024 Int. J. Mod. Phys. B 38 2450003
[10] Ali A, Mebarek-Oudina F, Barman A, Das S and Ismail A I 2023 Journal of Thermal Analysis and Calorimetry 148 7059
[11] Ahmad S, Ali K, Faridi A A and Ashraf M 2021 Int. Commun. Heat Mass Transfer 129 105708
[12] Jana S, Salehi-Khojin A and Zhong W H 2007 Thermochimica Acta 462 45
[13] Mannu R, Karthikeyan V, Velu N, Arumugam C, Roy V A, Gopalan A I and Kannan V 2021 Nanomaterials 11 440
[14] Shahzadi I and Bilal S 2020 Computer Methods and Programs in Biomedicine 187 105248
[15] Ketchate C G N, Kapen P T, Fokwa D and Tchuen G 2021 Informatics in Medicine Unlocked 27 100800
[16] Xiong Q, Altnji S, Tayebi T, Izadi M, Hajjar A, Sunden B and Li L K 2021 Sustainable Energy Technologies and Assessments 47 101341
[17] Khodadadi H, Aghakhani S, Majd H, Kalbasi R, Wongwises S and Afrand M 2018 Int. J. Heat Mass Transfer 127 997
[18] Waseem M, Gul T, Khan I, Khan A, Saeed A, Ali I and Kumam P 2021 Sci. Rep. 11 17498
[19] Ramzan M, Riasat S, Aljurbua S F, Ghazwani H A S and Mahmoud O 2022 Nanomaterials 12 1794
[20] Sun X, Zhang Y, Chen G, Liu T, Ren D, Ma J and Karwani S 2018 Energy&Fuels 32 11118
[21] Xian H W, Sidik N A C and Saidur R 2020 Int. Commun. Heat Mass Transfer 110 104389
[22] Mukhopadhyay S, De P R, Bhattacharyya K and Layek G C 2013 Ain Shams Engineering Journal 4 933
[23] Andersson H I, Aarseth J B and Dandapat B S 2000 Int. J. Heat Mass Transfer 43 69
[24] Park S, Atwair M, Kim K, Lee U, Na J, Zahid U and Lee C J 2021 Journal of Industrial and Engineering Chemistry 98 327
[25] Martorell J, Santoma P, Molins J J, García-Granada A A, Bea J A, Edelman E R and Balcells M 2012 Ann. New York Acad. Sci. 1254 51
[26] Mashaghi S, Abbaspourrad A, Weitz D A and Van Oijen A M 2016 TrAC Trends in Analytical Chemistry 82 118
[27] Alabdan R, Khan S U, Al-Qawasmi A R, Vakkar A and Tlili I 2021 Case Studies in Thermal Engineering 28 101412
[28] Vishnuprasad S, Haribabu K and Perarasu V T 2019 Heat and Mass Transfer 55 2221
[29] Alotaibi A, Gul T, Saleh Alotaibi I M, Alghuried A, Alshomrani A S and Alghuson M 2024 Engineering Applications of Computational Fluid Mechanics 18 2343418
[30] Turkyilmazoglu M 2019 Computer Modeling in Engineering&Sciences 120 63
[31] Alnahdi A S and Gul T 2024 Mod. Phys. Lett. B 38 2450046
[32] Muhammad K, Hayat T and Momani S 2024 Mod. Phys. Lett. B 38 2450160
[33] Alnahdi A S and Gul T 2024 Chin. Phys. B 33 104701
[34] Nasir S, Sirisubtawee S, Juntharee P and Gul T 2024 Chin. Phys. B 33 050204
[35] Khan A, Ali I, Almusawa M Y, Gul T and Alghamdi W 2023 Chin. Phys. B 32 084401
[36] Alharbi S O 2024 Journal of Thermal Analysis and Calorimetry 149 8289
[37] Awwad F A, Ismail E A and Gul T 2023 Symmetry 15 1288
[38] Ali I, Gul T and Khan A 2023 Mathematics 11 1893
[39] Qasim M, Khan Z H, Lopez R J and Khan W A 2016 Eur. Phys. J. Plus 131 16
[40] Nasir S, Shah Z, Islam S, Bonyah E and Gul T 2019 AIP Adv. 9 015223
[1] Blood-based magnetohydrodynamic Casson hybrid nanofluid flow on convectively heated bi-directional porous stretching sheet with variable porosity and slip constraints
Showkat Ahmad Lone, Rawan Bossly, Fuad S. Alduais, Afrah Al-Bossly, Arshad Khan, and Anwar Saeed. Chin. Phys. B, 2025, 34(1): 014101.
[2] One memristor-one electrolyte-gated transistor-based high energy-efficient dropout neuronal units
Yalin Li(李亚霖), Kailu Shi(时凯璐), Yixin Zhu(朱一新), Xiao Fang(方晓), Hangyuan Cui(崔航源), Qing Wan(万青), and Changjin Wan(万昌锦). Chin. Phys. B, 2024, 33(6): 068401.
[3] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[4] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[5] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[6] Artificial neural network potential for gold clusters
Ling-Zhi Cao(曹凌志), Peng-Ju Wang(王鹏举), Lin-Wei Sai(赛琳伟), Jie Fu(付洁), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2020, 29(11): 117304.
[7] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
[8] Hydromagnetic flow of a Cu–water nanofluid past a moving wedge with viscous dissipation
A. M. Salem, Galal Ismail, Rania Fathy. Chin. Phys. B, 2014, 23(4): 044402.
[9] Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments
Amani Tahat, Jordi Marti, Ali Khwaldeh, Kaher Tahat. Chin. Phys. B, 2014, 23(4): 046101.
[10] Heat transfer for boundary layers with cross flow
Krishnendu Bhattacharyya, Ioan Pop. Chin. Phys. B, 2014, 23(2): 024701.
[11] Unsupervised neural networks for solving Troesch’s problem
Muhammad Asif Zahoor Raja. Chin. Phys. B, 2014, 23(1): 018903.
[12] Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity
Ahmed M. Megahed. Chin. Phys. B, 2013, 22(9): 094701.
[13] Novel model of a AlGaN/GaN high electron mobility transistor based on an artificial neural network
Cheng Zhi-Qun(程知群), Hu Sha(胡莎), Liu Jun(刘军), and Zhang Qi-Jun . Chin. Phys. B, 2011, 20(3): 036106.
[14] Prediction of the plasma distribution using an artificial neural network
Li Wei(李炜), Chen Jun-Fang(陈俊芳), and Wang Teng(王腾). Chin. Phys. B, 2009, 18(6): 2441-2444.
[15] HL-2A tokamak disruption forecasting based on an artificial neural network
Wang Hao(王灏), Wang Ai-Ke(王爱科), Yang Qing-Wei(杨青巍), Ding Xuan-Tong(丁玄同), Dong Jia-Qi(董家齐), Sanuki H, and Itoh K. Chin. Phys. B, 2007, 16(12): 3738-3741.
No Suggested Reading articles found!