| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Deformation of magnetic skyrmion due to skyrmion-skyrmion interaction |
| Zhen-Qian Cui(崔振茜)1, Wen-Li Yang(杨文力)1,2,3, and Jun-Hui Zheng(郑俊辉)1,2,3,† |
1 Institute of Modern Physics and School of Physics, Northwest University, Xi'an 710127, China; 2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China; 3 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China |
|
|
|
|
Abstract Understanding skyrmion-skyrmion interactions and their dynamical effects is crucial for skyrmion-based applications. In this article, we investigate the deformation of skyrmions induced by the inter-skyrmion interaction in both static and dynamic scenarios for a two-skyrmion system. In the static case under a pinning magnetic field, the inter-skyrmion interaction energy decreases rapidly with increasing separation between the skyrmions, while their individual sizes grow. The semiaxis ratio of the elliptical skyrmion exhibits non-monotonic behavior, owing to the competition between skyrmion-skyrmion interactions and pinning effects. In dynamic simulations after removing the external pinning field, the two skyrmions spiral away from each other with increasing separation. Following a rapid relaxation period after magnetic field withdrawal, their semiaxis ratio typically increases with distance and the skyrmions gradually approach a perfect circular shape. These findings provide valuable insights into the behavior and interactions of two-skyrmion systems.
|
Received: 20 January 2025
Revised: 07 April 2025
Accepted manuscript online: 08 April 2025
|
|
PACS:
|
75.78.Cd
|
(Micromagnetic simulations ?)
|
| |
75.30.Gw
|
(Magnetic anisotropy)
|
| |
75.78.-n
|
(Magnetization dynamics)
|
| |
12.39.Dc
|
(Skyrmions)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175180, 11934015, and 12247103, Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant Nos. 22JSZ005 and 22JSQ041), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2024JC-YBMS-022). |
Corresponding Authors:
Jun-Hui Zheng
E-mail: junhui.zheng@nwu.edu.cn
|
Cite this article:
Zhen-Qian Cui(崔振茜), Wen-Li Yang(杨文力), and Jun-Hui Zheng(郑俊辉) Deformation of magnetic skyrmion due to skyrmion-skyrmion interaction 2025 Chin. Phys. B 34 077502
|
[1] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915 [2] Rößler U K, Bogdanov A N and Pfleiderer C 2006 Nature 442 797 [3] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901 [4] Onose Y, Okamura Y, Seki S, Ishiwata S and Tokura Y 2012 Phys. Rev. Lett. 109 037603 [5] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152 [6] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031 [7] Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A and Wiesendanger R 2013 Science 341 636 [8] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Nat. Phys. 7 713 [9] Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899 [10] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun. 3 988 [11] Luo J, Guo J H, Hou Y H,Wang J L, Xu Y B, Zhou Y, Pong PWT and Zhao G P 2023 Chin. Phys. Lett. 40 097501 [12] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Commun. 4 1463 [13] Thiele A A 1973 Phys. Rev. Lett. 30 230 [14] Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tretiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D and Kläui M 2017 Nat. Phys. 13 170 [15] JiangW, Zhang X, Yu G, ZhangW,Wang X, Jungfleisch M B, Pearson J E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A and te Velthuis S G E 2017 Nat. Phys. 13 162 [16] Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Böni P 2009 Phys. Rev. Lett. 102 186602 [17] Juge R, Je S G, de Souza Chaves D, Buda-Prejbeanu L D, Peña-Garcia J, Nath J, Miron I M, Rana K G, Aballe L, Foerster M, Genuzio F, Mentes T O, Locatelli A, Maccherozzi F, Dhesi S S, Belmeguenai M, Roussigné Y, Auffret S, Pizzini S, Gaudin G, Vogel J and Boulle O 2019 Phys. Rev. Appl. 12 044007 [18] Litzius K, Leliaert J, Bassirian P, Rodrigues D, Kromin S, Lemesh I, Zazvorka J, Lee K J, Mulkers J, Kerber N, Heinze D, Keil N, Reeve R M, Weigand M, Van Waeyenberge B, Schütz G, Everschor-Sitte K, Beach G S D and Kläui M 2020 Nat. Electron. 3 30 [19] Ritzmann U, von Malottki S, Kim J-V, Heinze S, Sinova J and Dupé B 2018 Nat. Electron. 1 451 [20] Yasin F S, Masell J, Karube K, Kikkawa A, Taguchi Y, Tokura Y and Yu X 2022 Proc. Natl. Acad. Sci. USA 119 e2200958119 [21] Lima Fernandes I, Bouaziz J, Blügel S and Lounis S 2018 Nat. Commun. 9 4395 [22] Reichhardt C, Reichhardt C J O and Milošević M V 2022 Rev. Mod. Phys. 94 035005 [23] Gruber R, Zázvorka J, Brems M A, Rodrigues D R, Dohi T, Kerber N, Seng B, Vafaee M, Everschor-Sitte K, Virnau P and Kläui M 2022 Nat. Commun. 13 3144 [24] Wang K, Zhang Y, Bheemarasetty V, Zhou S, Ying S C and Xiao G 2022 Nat. Commun. 13 722 [25] Büttner F, Moutafis C, Schneider M, Krüger B, Günther C M, Gellhufe J, von Korff Schmising C, Mohanty J, Pfau B, Schaffert S, Bisig A, Foerster M, Schulz T, Vaz C A F, Franken J H, Swagten H J M, Kläui M and Eisebitt S 2015 Nat. Phys. 11 225 [26] Liu L, Chen W and Zheng Y 2022 Phys. Rev. Lett. 128 257201 [27] Roy P E, Otxoa R M and Moutafis C 2019 Phys. Rev. B 99 094405 [28] Ribeiro de Assis I, Mertig I and Göbel B 2023 Phys. Rev. B 108 144438 [29] Pinna D, Bourianoff G and Everschor-Sitte K 2020 Phys. Rev. Appl. 14 054020 [30] Liu L, Chen W and Zheng Y 2023 Phys. Rev. Lett. 131 246701 [31] Capic D, Garanin D A and Chudnovsky E M 2020 J. Phys.: Condens. Matter 32 415803 [32] Tiwari K L, Lavoie J, Pereg-Barnea T and Coish W A 2019 Phys. Rev. B 100 125414 [33] Zhang X, Ezawa M and Zhou Y 2015 Sci. Rep. 5 9400 [34] Sommermann H M, Wyld H W and Pethick C J 1985 Phys. Rev. Lett. 55 476 [35] Jackson A, Jackson A D and Pasquier V 1985 Nucl. Phys. A 432 567 [36] Brearton R, van der Laan G and Hesjedal T 2020 Phys. Rev. B 101 134422 [37] Kutschera M and Pethick C J 1985 Nucl. Phys. A 440 670 [38] Kaulfuss U B and Meissner U G 1985 Phys. Rev. D 31 3024 [39] Wang Y, Wang J, Kitamura T, Hirakata H and Shimada T 2022 Phys. Rev. Appl. 18 044024 [40] Wang Y, Wang J, Kitamura T, Hirakata H and Shimada T 2024 Int. J. Mech. Sci. 261 108699 [41] Du H, Zhao X, Rybakov F N, Borisov A B, Wang S, Tang J, Jin C, Wang C, Wei W, Kiselev N S, Zhang Y, Che R, Blügel S and Tian M 2018 Phys. Rev. Lett. 120 197203 [42] Wang X S, Yuan H Y and Wang X R 2018 Commun. Phys. 1 31 [43] Zhang S and Li Z 2004 Phys. Rev. Lett. 93 127204 [44] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and van Waeyenberge B 2014 AIP Advances 4 107133 [45] Zhang S, Zhang J, Zhang Q, Barton C, Neu V, Zhao Y, Hou Z, Wen Y, Gong C, Kazakova O, Wang W, Peng Y, Garanin D A, Chudnovsky E M and Zhang X 2018 Appl. Phys. Lett. 112 132405 [46] Exl L, Bance S, Reichel F, Schrefl T, Stimming H P and Mauser N J 2014 J. Appl. Phys. 115 17D118 [47] Mulkers J, van Waeyenberge B and Milošević M V 2017 Phys. Rev. B 95 144401 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|