| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Stability and characteristic modes of skyrmions in magnetic nanotubes |
| Tijjani Abdulrazak1,2,†, Qizhi Cai(蔡淇智)1,3, and Guangwei Deng(邓光伟)1,3,4,‡ |
1 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China; 2 Department of Physics, Bayero University, Kano 700006, Nigeria; 3 Key Laboratory Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China; 4 Institute of Electronics and Information Industry Technology of Kash, Kash 844000, China |
|
|
|
|
Abstract We study the stability and dynamic behaviors of skyrmions in magnetic nanotubes, where curvature and cylindrical symmetry provide unique mechanisms for skyrmion formation and control. Unlike planar geometries, skyrmions confined in nanotubes exhibit elliptical shapes, stabilized through the interplay of curvature-induced effects, Dzyaloshinskii-Moriya interaction (DMI), and magnetic anisotropy. Using micromagnetic simulations, we construct phase diagrams of skyrmion stability as functions of DMI strength and anisotropy, identifying transitions to saturated or helical configurations in unstable regimes. The dynamics reveal distinct counterclockwise gyration modes, strongly influenced by tube geometry and applied microwave fields. We find that external magnetic fields significantly enhance the azimuthal velocity ($\bar{v}_\phi$) while maintaining a consistent axial motion ($\bar{v}_z$) along the $-z$-direction. Furthermore, transitions between gyration and linear translation modes emerge, governed by the combined effects of magnetic field, DMI, and curvature. Notably, the skyrmion's motion direction depends on the excitation mode and DMI sign, while curvature-modified spin textures produce effective fields without conventional pinning. These results demonstrate that magnetic nanotubes offer a robust and tunable platform for skyrmion manipulation, with potential applications in next-generation memory and logic devices. Our findings also highlight the role of curvature in enabling stable and controllable topological spin textures for advanced spintronic technologies.
|
Received: 17 April 2025
Revised: 30 May 2025
Accepted manuscript online: 04 June 2025
|
|
PACS:
|
75.50.Gg
|
(Ferrimagnetics)
|
| |
71.35.Ji
|
(Excitons in magnetic fields; magnetoexcitons)
|
| |
12.39.Dc
|
(Skyrmions)
|
| |
75.30.Ds
|
(Spin waves)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1405900), the National Natural Science Foundation of China (Grant Nos. U2441217 and 12074058), and Sichuan Science and Technology Program (Grant No. 2024YFHZ0372). |
Corresponding Authors:
Tijjani Abdulrazak, Guangwei Deng
E-mail: atijjani.phy@buk.edu.ng;gwdeng@uestc.edu.cn
|
Cite this article:
Tijjani Abdulrazak, Qizhi Cai(蔡淇智), and Guangwei Deng(邓光伟) Stability and characteristic modes of skyrmions in magnetic nanotubes 2025 Chin. Phys. B 34 107512
|
[1] Fert A and Cros V 2013 Nat. Nanotechnol. 8 152 [2] Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J and Morvan F J 2015 Sci. Rep. 5 7643 [3] Tomasello R, Martinez E, Zivieri R, Torres L, CarpentieriMand Finocchio G 2014 Sci. Rep. 4 6784 [4] Huang Y, Kang W, Zhang X, Zhou Y and Zhao W 2017 Nanotechnology 28 08LT02 [5] Zhang X, Ezawa M and Zhou Y 2015 Sci. Rep. 5 9400 [6] Huo X and Liu Y 2019 New J. Phys. 21 093024 [7] Heinze S, Von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blügel S 2011 Nat. Phys. 7 713 [8] Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, et al. 2010 Science 330 1648 [9] Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y and Tokura Y 2012 Nat. Commun. 3 988 [10] Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M and Rosch A 2012 Nat. Phys. 8 301 [11] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Nanotechnol. 8 742 [12] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839 [13] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Commun. 4 1463 [14] Abdulrazak T, Liu X, Wang Z, Cao Y and Yan P 2024 Chin. Phys. B 33 107504 [15] Yoo M W, Cros V and Kim J V 2017 Phys. Rev. B 95 184423 [16] Zhang X, Zhou Y and Ezawa M 2016 Nat. Commun. 7 10293 [17] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241 [18] Moriya T 1960 Phys. Rev. 120 91 [19] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915 [20] Yu X, Kikkawa A, Morikawa D, Shibata K, Tokunaga Y, Taguchi Y and Tokura Y 2015 Phys. Rev. B 91 054411 [21] Jin C M and Du H F 2015 Chin. Phys. B 24 128501 [22] Fert A and Van Dau F N 2019 C. R. Phys. 20 817 [23] Landeros P and Núñez A S 2010 J. Appl. Phys. 108 034303 [24] Landeros P, Allende S, Escrig J, Salcedo E, Altbir D and Vogel E E 2007 Appl. Phys. Lett. 90 102501 [25] Yan M, Andreas C, Kákay A, García-Sánchez F and Hertel R 2011 Appl. Phys. Lett. 99 122505 [26] Hertel R 2016 J. Phys.: Condens. Matter 28 483002 [27] Bachmann J, Knez M, Barth S, Shen H, Mathur S, Gösele U and Nielsch K 2007 J. Am. Chem. Soc. 129 9554 [28] Weber D P, Rüffer D, Buchter A, Xue F, Russo-Averchi E, Huber R, Berberich P, Arbiol J, Fontcuberta i Morral A, Grundler D, et al. 2012 Nano Lett. 12 6139 [29] Buchter A, Nagel J, Rüffer D, Xue F, Weber D P, Kieler O F, Weimann T, Kohlmann J, Zorin A B, Russo-Averchi E, et al. 2013 Phys. Rev. Lett. 111 067202 [30] Fernandez-Roldan J A, Chrischon D, Dorneles L S, Chubykalo- Fesenko O, Vazquez M and Bran C 2018 Nanomaterials 8 692 [31] Gaididei Y, Kravchuk V P and Sheka D D 2014 Phys. Rev. Lett. 112 257203 [32] Yershov K, Kravchuk V, Sheka D and Roessler U 2020 SciPost Phys. 9 043 [33] Sheka D D 2021 Appl. Phys. Lett. 118 230502 [34] Kravchuk V P, Rößler U K, Volkov O M, Sheka D D, van den Brink J, Makarov D, Fuchs H, Fangohr H and Gaididei Y 2016 Phys. Rev. B 94 144402 [35] Yang J, Abert C, Suess D and Kim S-K 2021 Sci. Rep. 11 3886 [36] Carvalho-Santos V L, Corona R M, Altbir D and Castillo-Sepúlveda S 2020 Phys. Rev. B 102 024444 [37] Tejo F, Toneto D, Oyarzún S, Hermosilla J, Danna C S, Palma J L, da Silva R B, Dorneles L S and Denardin J C 2020 ACS Appl. Mater. Interfaces 12 53454 [38] Carvalho-Santos V L, Castro M A, Salazar-Aravena D, Laroze D, Corona R M, Allende S and Altbir D 2021 Appl. Phys. Lett. 118 172405 [39] Korniienko A, Kákay A, Sheka D D and Kravchuk V P 2020 Phys. Rev. B 102 014432 [40] Farias W S, Santece I A and Coura P Z 2023 J. Magn. Magn. Mater. 568 170386 [41] Yershov K V, Kákay A and Kravchuk V P 2022 Phys. Rev. B 105 054425 [42] Kechrakos D, Tzannetou L and Patsopoulos A 2020 Phys. Rev. B 102 054439 [43] Yu X and Liu Y 2021 Phys. Lett. A 415 127656 [44] Wang X, Wang X S, Wang C, Yang H, Cao Y and Yan P 2019 J. Phys. D: Appl. Phys. 52 225001 [45] Yang J, Kim J, Abert C, Suess D and Kim S K 2020 Phys. Rev. B 102 094439 [46] Ga Y, Cui Q, Liang J, Yu D, Zhu Y, Wang L and Yang H 2022 Phys. Rev. B 106 054426 [47] Jiang J, Ga Y, Li P, Cui Q, Wang L, Yu D, Liang J and Yang H 2024 Phys. Rev. B 109 014402 [48] Müller J and Rosch A 2015 Phys. Rev. B 91 054410 [49] Zhang X, Zhou Y and Ezawa M 2016 Sci. Rep. 6 24795 [50] Dupé B, Hoffmann M, Paillard C and Heinze S 2014 Nat. Commun. 5 4030 [51] von Malottki S, Dupé B, Bessarab P F, Delin A and Heinze S 2017 Sci. Rep. 7 12299 [52] Hagemeister J, Romming N, Von Bergmann K, Vedmedenko E Y and Wiesendanger R 2015 Nat. Commun. 6 8455 [53] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Adv. 4 107133 [54] Wang W, Albert M, Beg M, Bisotti M A, Chernyshenko D, Cortès- Ortuño D, Hawke I and Fangohr H 2015 Phys. Rev. Lett. 114 087203 [55] Büttner F, Lemesh I and Beach G S D 2018 Sci. Rep. 8 4464 [56] Wang X S, Yuan H Y and Wang X R 2018 Commun. Phys. 1 1 [57] Wang X S, Yuan H Y and Wang X R 2018 Commun. Phys. 1 31 [58] Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422 [59] Yoo J W, Lee S J, Moon J H and Lee K J 2014 IEEE Trans. Magn. 50 2500404 [60] Mochizuki M 2012 Phys. Rev. Lett. 108 017601 [61] Galvez D, Castro M, Bittencourt G, Carvalho V and Allende S 2023 Nanomaterials 13 2841 [62] Mochizuki M 2012 Phys. Rev. Lett. 108 017601 [63] Abdulrazak T, Liu X, Jin Z, Cao Y and Yan P 2024 Chin. Phys. B 33 087503 [64] Papanicolaou N and Tomaras T N 1991 Nucl. Phys. B 360 425 [65] Abdulrazak T, Liu X, Wang Z, Cao Y and Yan P 2024 Chin. Phys. B 33 107504 [66] Jin C, Li Z A, Kovács A, Caron J, Zheng F, Rybakov F N, Kiselev N S, Du H, Blügel S, Tian M and Zhang Y 2017 Nat. Commun 8 15569 [67] Zheng F, Li H,Wang S, Song D, Jin C, WeiW, Kovács A, Zang J, Tian M, Zhang Y and Du H 2017 Phys. Rev. Lett 119 197205 [68] Zhao X, Jin C, Wang C, Du H, Zang J, Tian M, Che R and Zhang Y 2016 Proc. Natl. Acad. Sci. USA 113 4918 [69] Stolt M J, Li Z A, Phillips B, Song D, Mathur N, Dunin-Borkowski R E and Jin S 2017 Nano Lett. 17 508 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|