Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 107503    DOI: 10.1088/1674-1056/addaa6
Special Issue: SPECIAL TOPIC — Advanced magnonics
SPECIAL TOPIC — Advanced magnonics Prev   Next  

Ballistic magnon circulators with magnetic skyrmions

Haichuan Zhang(张海川)1,2, Hongbin Wu(武宏斌)1,2, and Jin Lan(兰金)1,2,†
1 Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300072, China;
2 Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Tianjin University, Tianjin 300354, China
Abstract  Spin waves, quantized as magnons, constitute a fundamental class of excitations and serve as one of the primary angular momentum carriers in magnetic systems. Devoid of Joule heating, a magnonic device that routes spin waves between different ports holds promise for an energy-efficient information infrastructure. Here, we systematically investigate the transport behavior of a magnetic skyrmion-based magnon circulator, a representative device that directs spin wave flow in a non-reciprocal manner. Particularly, a ballistic transport model is established, where the scattering of spin waves by magnetic skyrmions is simplified as magnon deflection by fictitious electromagnetic fields within the skyrmions. Through the combination of ballistic analyses and micromagnetic simulations, the circulation performance is rigorously evaluated for multiple magnon circulators.
Keywords:  spin wave      ballistic transport      magnetic skyrmion      circulator  
Received:  16 April 2025      Revised:  14 May 2025      Accepted manuscript online:  20 May 2025
PACS:  75.30.Ds (Spin waves)  
  73.23.Ad (Ballistic transport)  
  85.70.-w (Magnetic devices)  
  42.25.Ja (Polarization)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12374117 and 11904260) and the Natural Science Foundation of Tianjin (Grant No. 20JCQNJC02020).
Corresponding Authors:  Jin Lan     E-mail:  lanjin@tju.edu.cn

Cite this article: 

Haichuan Zhang(张海川), Hongbin Wu(武宏斌), and Jin Lan(兰金) Ballistic magnon circulators with magnetic skyrmions 2025 Chin. Phys. B 34 107503

[1] Cornelissen L J, Liu J, Duine R A, Youssef J B and van Wees B J 2015 Nat. Phys. 11 1022
[2] Lebrun R, Ross A, Bender S A, Qaiumzadeh A, Baldrati L, Cramer J, Brataas A, Duine R A and Kläui M 2018 Nature 561 222
[3] Lan J, Yu W, Wu R and Xiao J 2015 Phys. Rev. X 5 041049
[4] Han J, Zhang P, Hou J T, Siddiqui S A and Liu L 2019 Science 366 1121
[5] Yu W, Lan J and Xiao J 2020 Phys. Rev. Appl. 13 024055
[6] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
[7] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152
[8] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453
[9] Yu H, Xiao J and Schultheiss H 2021 Phys. Rep. 905 1
[10] Flebus B, Grundler D, Rana B, et al. 2024 J. Phys.: Condens. Matter 36 363501
[11] Wang Q, Verba R, Heinz B, Schneider M, Wojewoda O, Davídková K, Levchenko K, Dubs C, Mauser N J, Urbánek M, Pirro P and Chumak A V 2023 Sci. Adv. 9 eadg4609
[12] Girardi D, Finizio S, Donnelly C, Rubini G, Mayr S, Levati V, Cuccurullo S, Maspero F, Raabe J, Petti D and Albisetti E 2024 Nat. Commun. 15 3057
[13] Zhang Y, Qiu L, Chen J, Wu S, Wang H, Malik IA, Cai M, Wu M, Gao P, Hua C, Yu W, Xiao J, Jiang Y, Yu H, Shen K and Zhang J 2025 Nat. Mater. 24 69
[14] Liu C, Ai F, Reisbick S, Zong A, Pofelski A, Han MG, Camino F, Jing C, Lomakin V and Zhu Y 2025 Nat. Mater. 24 406
[15] Lan G, Liu K Y, Wang Z, Xia F, Xu H, Guo T, Zhang Y, He B, Li J, Wan C, Bauer G E W, Yan P, Liu G Q, Pan X Y, Han X and Yu G 2025 Nat. Commun. 16 1178
[16] Schneider T, Serga A A, Leven B, Hillebrands B, Stamps R L and Kostylev M P 2008 Appl. Phys. Lett. 92 022505
[17] Rousseau O, Rana B, Anami R, Yamada M, Miura K, Ogawa S and Otani Y 2015 Sci. Rep. 5 09873
[18] Liu T and Vignale G 2011 Phys. Rev. Lett. 106 247203
[19] Dobrovolskiy O V, Sachser R, Bunyaev S A, Navas D, Bevz V M, Zelent M, Smigaj W, Rychły J, Krawczyk M, Vovk R V, Huth M and Kakazei G N 2019 ACS Appl. Mater. Interfaces 11 17654
[20] Hertel R, Wulfhekel W and Kirschner J 2004 Phys. Rev. Lett. 93 257202
[21] Lan J, Yu W and Xiao J 2017 Nat. Commun. 8 178
[22] Faridi E, Kim S K and Vignale G 2022 Phys. Rev. B 106 094411
[23] Ye F and Lan J 2021 Phys. Rev. B 104 L180401
[24] Wu H and Lan J 2022 Phys. Rev. B 105 174427
[25] Liu Y and Lan J 2023 Phys. Rev. B 108 L180407
[26] Yu W, Lan J, Wu R and Xiao J 2016 Phys. Rev. B 94 140410
[27] Xing X and Zhou Y 2016 NPG Asia Mater. 8 e246
[28] Wang X S, Zhang H W and Wang X R 2018 Phys. Rev. Appl. 9 024029
[29] Chumak A V, Serga A A and Hillebrands B 2014 Nat. Commun. 5 4700
[30] Wang Q, Verba R, Davídková K, Heinz B, Tian S, Rao Y, Guo M, Guo X, Dubs C, Pirro P and Chumak A V 2024 Nat. Commun. 15 7577
[31] Wang Z, Yuan H Y, Cao Y, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202
[32] Koerner C, Dreyer R, Wagener M, Liebing N, Bauer H G and Woltersdorf G 2022 Science 375 1165
[33] Leenders R A, Afanasiev D, Kimel A V and Mikhaylovskiy R V 2024 Nature 630 335
[34] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[35] Ferry D K, Goodnick SMand Bird J 2009 Transport in Nanostructures (Cambridge: Cambridge University Press)
[36] Daniels M W, Yu W, Cheng R, Xiao J and Xiao D 2019 Phys. Rev. B 99 224433
[37] Szulc K 2020 Phys. Rev. Appl. 14 034063
[38] Wang Q, Chumak A V and Pirro P 2021 Nat. Commun. 12 2636
[39] Zhao J, Feng L, Ma M and Ma F 2023 J. Magn. Magn. Mater. 586 171161
[40] Lan J and Xiao J 2021 Phys. Rev. B 103 054428
[41] Lan J, Yu W and Xiao J 2021 Phys. Rev. B 103 214407
[42] Jin Z, Yao X, Wang Z, Yuan HY, Zeng Z, Wang W, Cao Y and Yan P 2023 Phys. Rev. Lett. 131 166704
[43] Zhang X, Ezawa M, Xiao D, Zhao GP, Liu Y and Zhou Y 2015 Nanotechnology 26 225701
[44] Zhang X, Müller J, Xia J, Garst M, Liu X and Zhou Y 2017 New J. Phys. 19 065001
[45] Liang X, Lan J, Zhao G, Zelent M, Krawczyk M and Zhou Y 2023 Phys. Rev. B 108 184407
[46] Zhang Z, Lin K, Zhang Y, Bournel A, Xia K, Kläui M and Zhao W 2023 Sci. Adv. 9 eade7439
[47] van Hoogdalem KA, Tserkovnyak Y and Loss D 2013 Phys. Rev. B 87 024402
[48] Landau L and Lifshitz E 1990 The Classical Theory of Fields No. 2 in Course of Theoretical Physics (Beijing: World Publishing Corporation)
[49] Kim S K, Nakata K, Loss D and Tserkovnyak Y 2019 Phys. Rev. Lett. 122 057204
[50] Fleury R, Sounas DL, Sieck CF, Haberman MR and Alù A 2014 Science 343 516
[51] Rasmussen C, Quan L and Alù A 2021 J. Appl. Phys. 129 210903
[52] Song C, Zhao L, Liu J and Jiang W 2022 Nano Lett. 22 9638
[53] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Adv. 4 107133
[54] Ohara K, Zhang X, Chen Y, Wei Z, Ma Y, Xia J, Zhou Y and Liu X 2021 Nano Lett. 21 4320
[55] Duine R A, Lee K J, Parkin S S P and Stiles M D 2018 Nat. Phys. 14 217
[56] Schütte C and Garst M 2014 Phys. Rev. B 90 094423
[57] Iwasaki J, Beekman A J and Nagaosa N 2014 Phys. Rev. B 89 064412
[58] Wu H and Lan J 2025 Phys. Rev. B 112 064410
[1] Magnon behavior in YIG film under microwave excitation investigated by Brillouin light scattering
Guofu Xu(徐国服), Kang An(安康), Wenjun Ma(马文俊), Xiling Li(李喜玲), C. K. Ong, Chi Zhang(张驰), and Guozhi Chai(柴国志). Chin. Phys. B, 2025, 34(6): 067507.
[2] Orbital magnetic field effect on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator
Pi-Ye Zhou(周丕烨), Xiao-Hui Li(李晓慧), and Yuan Wan(万源). Chin. Phys. B, 2025, 34(6): 067501.
[3] Strain-manipulated dispersion characteristics of magnonic crystals with Dzyaloshinskii-Moriya interaction and applications on spin-wave devices
Chuhan Zhou(周楚涵), Xiaotian Jiao(焦晓天), Jiaxi Xu(徐佳熙), Zhaonian Jin(金兆年), Lin Chen(陈琳), and Zhikuo Tao(陶志阔). Chin. Phys. B, 2025, 34(2): 027501.
[4] Directly tunable magnon frequency comb effect based on domain wall
Xiaoxue Yang(杨霄雪), Huiting Li(李慧婷), Xue-Feng Zhang(张雪枫), Xiao-Ping Ma(马晓萍), Je-Ho Shim(沈帝虎), Yingjiu Jin(金迎九), and Hong-Guang Piao(朴红光). Chin. Phys. B, 2025, 34(10): 107507.
[5] Stability and characteristic modes of skyrmions in magnetic nanotubes
Tijjani Abdulrazak, Qizhi Cai(蔡淇智), and Guangwei Deng(邓光伟). Chin. Phys. B, 2025, 34(10): 107512.
[6] Review of magnons in van der Waals materials: From fundamental physics to frontiers
Zhen-Nan Wang(王震南), Yan-Pei Lv(吕延培), Hao-Nan Chang(常浩男), and Jun Zhang(张俊). Chin. Phys. B, 2025, 34(10): 107201.
[7] Micromagnetic study of the dipolar-exchange spin waves in antiferromagnetic thin films
Jiongjie Wang(王炯杰) and Jiang Xiao(肖江). Chin. Phys. B, 2025, 34(10): 107505.
[8] Spin-wave propagation in a bilayer of van derWaals magnet and ferrimagnetic insulator
Tengfei Xie(谢腾飞) and Huajun Qin(秦华军). Chin. Phys. B, 2025, 34(10): 107202.
[9] Spin wave resonance frequency in bilayer ferromagnetic films with the biquadratic exchange interaction
Xiaojie Zhang(张晓洁), Yuting Wang(王雨汀), Yanqiu Chang(常艳秋), Huan Wang(王焕), Jianhong Rong(荣建红), and Guohong Yun(云国宏). Chin. Phys. B, 2024, 33(9): 097601.
[10] Consistency between domain wall oscillation modes and spin wave modes in nanostrips
Xinwei Dong(董新伟) and Zhenjiang Wu(吴振江). Chin. Phys. B, 2024, 33(6): 067502.
[11] Tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals
Zhao-Nian Jin(金兆年), Xuan-Lin He(何宣霖), Chao Yu(于超), Henan Fang(方贺男), Lin Chen(陈琳), and Zhi-Kuo Tao(陶志阔). Chin. Phys. B, 2024, 33(1): 017501.
[12] Magnonic band-pass and band-stop filters with structurally modulated waveguides
Lai-He Feng(冯来和), Mang-Yuan Ma(马莽原), Zhi-Hua Liu(刘智华), Kai-Le Xie(解凯乐), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2023, 32(6): 067503.
[13] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[14] Room-temperature creation and manipulation of skyrmions in MgO/FeNiB/Mo multilayers
Wen-Hui Liang(梁文会), Jian Su(苏鉴), Yu-Tong Wang(王雨桐), Ying Zhang(张颖), Feng-Xia Hu(胡凤霞), and Jian-Wang Cai(蔡建旺). Chin. Phys. B, 2023, 32(12): 127504.
[15] Nonlinear three-magnon scattering in low-damping La0.67Sr0.33MnO3 thin films
Yuelin Zhang(张跃林), Lutong Sheng(盛路通), Jilei Chen(陈济雷), Jie Wang(王婕), Zengtai Zhu(朱增泰), Rundong Yuan(袁润东), Jingdi Lu(鲁京迪), Hanchen Wang(王涵晨), Sijie Hao(郝思洁), Peng Chen(陈鹏), Guoqiang Yu(于国强), Xiufeng Han(韩秀峰), and Haiming Yu(于海明). Chin. Phys. B, 2023, 32(10): 107505.
No Suggested Reading articles found!