Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 127504    DOI: 10.1088/1674-1056/acf5d4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Room-temperature creation and manipulation of skyrmions in MgO/FeNiB/Mo multilayers

Wen-Hui Liang(梁文会)1,2,3,†, Jian Su(苏鉴)3,4,†, Yu-Tong Wang(王雨桐)1,2,†, Ying Zhang(张颖)3, Feng-Xia Hu(胡凤霞)3,4,5,‡, and Jian-Wang Cai(蔡建旺)3,4,§
1 Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China;
2 Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China;
3 Beijing National Laboratory for Condensed Matter Physics and State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Magnetic skyrmions in multilayer structures are considered as a new direction for the next generation of storage due to their small size, strong anti-interference ability, high current-driven mobility, and compatibility with existing spintronic technology. In this work, we present a tunable room temperature skyrmion platform based on multilayer stacks of MgO/FeNiB/Mo. We systematically studied the creation of magnetic skyrmions in MgO/FeNiB/Mo multilayer structures with perpendicular magnetic anisotropy (PMA). In these structures, the magnetic anisotropy changes from PMA to in-plane magnetic anisotropy (IMA) as the thickness of FeNiB layer increases. By adjusting the applied magnetic field and electric current, stable and high-density skyrmions can be obtained in the material system. The discovery of this material broadens the exploration of new materials for skyrmion and promotes the development of spintronic devices based on skyrmions.
Keywords:  magnetic skyrmion      MgO/FeNiB/Mo multilayers      electromagnetic coordinated manipulation      Lorentz transmission electron microscopy (LTEM)  
Received:  10 July 2023      Revised:  30 August 2023      Accepted manuscript online:  01 September 2023
PACS:  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
  75.30.Gw (Magnetic anisotropy)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
Fund: Project supported by the National Basic Research Program of China (Grant No.2015CB921403), the National Key Research and Development Program of China (Grant No.2016YFA0300804), and the National Natural Science Foundation of China (Grant Nos.51871236, 11874408, 51431009, 92263202, and 51971240), the Science Center of the National Science Foundation of China (Grant No.52088101), and the Strategic Priority Research Program (B, Grant No.XDB33030200) of the Chinese Academy of Sciences (CAS).
Corresponding Authors:  Feng-Xia Hu, Jian-Wang Cai     E-mail:  fxhu@iphy.ac.cn;jwcai@iphy.ac.cn

Cite this article: 

Wen-Hui Liang(梁文会), Jian Su(苏鉴), Yu-Tong Wang(王雨桐), Ying Zhang(张颖), Feng-Xia Hu(胡凤霞), and Jian-Wang Cai(蔡建旺) Room-temperature creation and manipulation of skyrmions in MgO/FeNiB/Mo multilayers 2023 Chin. Phys. B 32 127504

[1] Soumyanarayanan A, Raju M, Gonzalez Oyarce A L, Tan A K C, Im M Y, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F and Panagopoulos C 2017 Nat. Mater. 16 898
[2] Ba Y, Zhuang S H, Zhang Y K, Wang Y T, Gao Y, Zhou H A, Chen M F, Sun W D, Liu Q, Chai G Z, Ma J, Zhang Y, Tian H F, Du H F, Jiang W J, Nan C W, Hu J M and Zhao Y G 2021 Nat. Commun. 12 322
[3] Muhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Boni P 2009 Science 323 915
[4] Müunzer W, Neubauer A, Adams T, Müuhlbauer S, Franz C, Jonietz F, Georgii R, Büoni P, Pedersen B, Schmidt M, Rosch A and Pfleiderer C 2010 Phys. Rev. B 81 041203
[5] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[6] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y and Tokura Y 2011 Nat. Mater. 10 106
[7] Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G and Blüugel S 2011 Nat. Phys. 7 713
[8] Pollard S D, Garlow J A, Yu J W, Wang Z, Zhu Y M and Yang H 2017 Nat. Commun. 8 14761
[9] He M, Li G, Zhu Z Z, Zhang Y, Peng L C, Li R, Li J Q, Wei H X, Zhao T Y, Zhang X G, Wang S G, Lin S Z, Gu L, Yu G Q, Cai J W and Shen B G 2018 Phys. Rev. B 97 174419
[10] He M, Peng L C, Zhu Z Z, Li G, Cai J W, Li J Q, Wei H X, Gu L, Wang S G, Zhao T Y, Shen B G and Zhang Y 2017 Appl. Phys. Lett. 111 202403
[11] Yu G Q, Upadhyaya P, Li X, Li W Y, Kim S K, Fan Y B, Wong K L, Tserkovnyak Y, Amiri P K and Wang K L 2016 Nano Lett. 16 1981
[12] Moreau-Luchaire C, Mouta S C, Reyren N, Sampaio J, Vaz C A, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhuter P, George J M, Weigand M, Raabe J, Cros V and Fert A 2016 Nat. Nanotechnol. 11 444
[13] Zhou Y and Ezawa M 2014 Nat. Commun. 5 4652
[14] Iwasaki J, Mochizuki M and Nagaosa N 2013 Nat. Nanotechnol. 8 742
[15] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839
[16] Lin S Z 2016 Phys. Rev. B 94 020402
[17] Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, von Bergmann K, Kubetzka A and Wiesendanger R 2013 Science 341 636
[18] Qin Z G, Wang Y, Zhu S M, Jin C D, Fu J C, Liu Q F and Cao J W 2018 ACS Appl. Mater. Interfaces 10 36556
[19] Su J, Li G, Bai H, Zhu Z Z, Zhang Y, Kang S S, Zhu T and Cai J W 2020 J. Phys. D: Appl. Phys. 53 125003
[20] Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Benjamin Jungfleisch M, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E and Hoffmann A 2015 Science 349 283
[21] Woo S, Litzius K, Krüger B, Im M Y, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M A, Fischer P, Kläui M and Beach G S D 2016 Nat. Mater. 15 501
[22] Boulle O, Vogel J, Yang H X, Pizzini S, de Souza Chaves D, Locatelli A, Menteş T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, and Gaudin G 2016 Nat. Nanotechnol. 11 449
[23] Chen G, Mascaraque A, N'Diaye A T and Schmid A K 2015 Appl. Phys. Lett. 106 242404
[24] Kisielewski M, Maziewski A, Polyakova T and Zablotskii V 2004 Phys. Rev. B 69 184419
[25] Gao Y, Zhang J, Dou P, Li Z, Zhu Z, Guo Y, Hu C, Qin W, He C, Shen S, Zhang Y and Wang S 2022 Chin. Phys. B 31 067502
[1] Progress and challenges in magnetic skyrmionics
Haifeng Du(杜海峰) and Xiangrong Wang(王向荣). Chin. Phys. B, 2022, 31(8): 087507.
[2] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[3] Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications
Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼). Chin. Phys. B, 2022, 31(1): 018503.
[4] Lorentz transmission electron microscopy for magnetic skyrmions imaging
Jin Tang(汤进), Lingyao Kong(孔令尧), Weiwei Wang(王伟伟), Haifeng Du(杜海峰), Mingliang Tian(田明亮). Chin. Phys. B, 2019, 28(8): 087503.
[5] Lorentz transmission electron microscopy studies on topological magnetic domains
Li-Cong Peng(彭丽聪), Ying Zhang(张颖), Shu-Lan Zuo(左淑兰), Min He(何敏), Jian-Wang Cai(蔡建旺), Shou-Guo Wang(王守国), Hong-Xiang Wei(魏红祥), Jian-Qi Li(李建奇), Tong-Yun Zhao(赵同云), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 066802.
No Suggested Reading articles found!