Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 037502    DOI: 10.1088/1674-1056/acf280
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film

Fengguo Fan(范凤国) and Lintong Duan(段林彤)
School of Physics and Electrical Information, Shangqiu Normal University, Shangqiu 476000, China
Abstract  The flexibility of nanoparticle films is a topic of rapidly growing interest in both scientific and engineering researches due to their numerous potential applications in a broad range of wearable electronics and biomedical devices. This article presents the elucidation of the properties of nanoparticle films. Here, a flexible film is fabricated based on polyethylene terephthalate (PET) and magnetic iron oxide at the nanoscale using layer-by-layer technology. The 2D thin flexible film material can be bent at different angles from 0° to 360°. With an increase in elastic deformation angles, the magnetocaloric effect of the film gradually increases in the alternating magnetic field. The test results from a vibrating sample magnetometer and a low-frequency impedance analyzer demonstrate that the film has a good magnetic response and anisotropy. The magnetocaloric effect and magnetic induction effect are controlled by deformation, providing a new idea for the application of elastic films. It combines the flexibility of the nanoparticle PET substrate and, in the future, it may be used for skin adhesion for administration and magnetic stimulation control.
Keywords:  nanoparticle film      deformation      magnetic properties      flexible substrates  
Received:  16 March 2023      Revised:  18 August 2023      Accepted manuscript online:  22 August 2023
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.50.Ee (Antiferromagnetics)  
  75.75.Jn (Dynamics of magnetic nanoparticles)  
Fund: Project supported by Scientific Research Funds (Grant No. 7001/700199) and Henan Provincial Department Scientific Research Project (Grant No. 22A430034).
Corresponding Authors:  Fengguo Fan     E-mail:  fanfengguo@126.com

Cite this article: 

Fengguo Fan(范凤国) and Lintong Duan(段林彤) Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film 2024 Chin. Phys. B 33 037502

[1] ia Y P, Ling Z G and Pan H L 2023 Chin. Phys. B 32 027501
[2] Soriano D, Katsnelson M I and Fernandez-Rossier J 2020 Nano Lett. 20 6225
[3] Jiang W, Hou Y F, Li S J, Fu Z G and Zhang P 2021 Chin. Phys. B 30 127501
[4] Hu L B, David S H and Grüner G 2010 Chem. Rev. 110 5790
[5] Zhao X, Wang K and Li B 2018 Anal. Chemi. 90 7158
[6] Tyle R R, Jungil C, Bandodkar A J, Siddharth K, Philipp G, Limei T, Roozbeh G and John A R 2019 Chem. Rev. 119 5461
[7] Loong L M, Lee W and Qiu X 2016 Adv. Mater. 28 4983
[8] Liu W, Liu M and Ma R 2018 Adv. Funct. Mater. 28 1705928
[9] Yong Z, Ming L and Shen L 2017 ACS Nano 11 8002
[10] Merabtine S, Zighem F and Garcia-Sanchez A 2018 Sci. Rep.-UK 8 13695
[11] Zighem F, Bahoui A E and Moulin J 2014 J. Appl. Phys. 116 1062
[12] Sun X, Bedoya-Pinto A and Llopis R 2014 Appl. Phys. Lett. 105 083302
[13] Kozakova Z, Kuritka I, Kazantseva E N, Babayan V, Pastorek M, Machovsky M, Bazant P and Saha P 2015 Dalton T. 44 21099
[14] Nabiyouni G, Julaee M, Ghanbari D, Aliabadi P C and Safaie N 2015 J. Ind. Eng. Chem. 21 599
[15] Xie J, Zhang Y and Yan C 2014 Biomaterials 35 9126
[16] Chen B, Sun J and Fan F 2018 Nanoscale 10 7369
[17] Li Y, Hu K and Chen B 2017 Colloid. Surface. A 520 348
[18] Fan F, Sun J and Chen B 2018 Sci. China. Mater. 61 1
[19] Merabtine S, Zighem F, Garcia-Sanchez A 2018 Sci. Rep.-UK 8 13695
[20] Ochiai E I 1978 J. Chem. Educ. 55 631
[21] Mohammeda D W, Ameena R B, Sierros K A, Bowenc J and Kukureka S N 2018 Thin Solid Films 645 241
[22] Dai G, Zhan Q and Liu Y 2012 Appl. Phy. Lett. 100 3238
[23] Sun J, Fan F and Wang P 2016 Chemphyschem. 17 3377
[1] Higher-dimensional Chen-Lee-Liu equation and asymmetric peakon soliton
Qiao-Hong Han(韩巧红) and Man Jia(贾曼). Chin. Phys. B, 2024, 33(4): 040202.
[2] Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets
Yuhao Li(李豫豪), Xiaodong Fan(范晓东), Zhi Jia(贾智), Lu Fan(范璐), Guangfei Ding(丁广飞), Xincai Liu(刘新才), Shuai Guo(郭帅), Bo Zheng(郑波), Shuai Cao(曹帅), Renjie Chen(陈仁杰), and Aru Yan(闫阿儒). Chin. Phys. B, 2024, 33(3): 037508.
[3] Design and fabrication of compound varifocal lens driven by polydimethylsiloxane film elastic deformation
Wen-Hao Miao(缪文浩), Ze-Feng Han(韩泽峰), Rui Zhao(赵瑞), Zhong-Cheng Liang(梁忠诚), Song-Feng Kou(寇松峰), and Rong-Qing Xu(徐荣青). Chin. Phys. B, 2024, 33(2): 024103.
[4] Temperature effect on nanotwinned Ni under nanoindentation using molecular dynamic simulation
Xi He(何茜), Ziyi Xu(徐子翼), and Yushan Ni(倪玉山). Chin. Phys. B, 2024, 33(1): 016201.
[5] Anelasticity to plasticity transition in a model two-dimensional amorphous solid
Baoshuang Shang(尚宝双). Chin. Phys. B, 2024, 33(1): 016102.
[6] Out-of-plane weak ferromagnetism at room temperaturein lattice-distortion non-collinear antiferromagnet of single-crystal Mn3Sn
Bo-Xi Zhang(张博熙), Ping Song(宋平), Shan-Shan Deng(邓珊珊), Li Lou(娄理), and Sen Yao(姚森). Chin. Phys. B, 2023, 32(8): 087502.
[7] Layer thickness dependent plastic deformation mechanism in Ti/TiCu dual-phase nano-laminates
Minrong An(安敏荣), Yuefeng Lei(雷岳峰), Mengjia Su(宿梦嘉), Lanting Liu(刘兰亭), Qiong Deng(邓琼), Haiyang Song(宋海洋), Yu Shang(尚玉), and Chen Wang(王晨). Chin. Phys. B, 2023, 32(6): 066201.
[8] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[9] Analysis on the cation distribution of MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1) using Mössbauer spectroscopy and magnetic measurement
Shiyu Xu(徐诗语), Jiajun Mo(莫家俊), Lebin Liu(刘乐彬), and Min Liu(刘 敏). Chin. Phys. B, 2023, 32(12): 127507.
[10] Reconstructions of time-evolving sound-speed fields perturbed by deformed and dispersive internal solitary waves in shallow water
Qin-Ran Li(李沁然), Chao Sun(孙超), Lei Xie(谢磊), and Xiao-Dong Huang(黄晓冬). Chin. Phys. B, 2023, 32(12): 124701.
[11] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[12] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[13] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[14] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[15] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
No Suggested Reading articles found!