Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027701    DOI: 10.1088/1674-1056/ae1f80
TOPICAL REVIEW — Multiferroicity and multicaloric effects Prev  

Electrocaloric refrigeration: From physical fundamentals to practical devices

Feiyu Zhang(张费宇), Tiannan Yang(杨天南)‡, and Xiaoshi Qian(钱小石)†
State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  The electrocaloric (EC) effect refers to the change in the polarization entropy and/or temperature of dielectric materials when an electric field is applied and removed. EC refrigeration has received increasing interest as an alternative to conventional refrigeration technologies because it provides both high energy efficiency and zero global warming potential. In this review, we first introduce the thermodynamic fundamentals of the EC effect and the mechanism of EC refrigeration cycles. We then present recent advances in EC cooling technologies, from material improvements to device demonstrations, including a critical analysis of existing material and device characterization methodologies and a discussion of how to reliably measure the parameters of materials and devices. Finally, the current challenges and possible future prospects for EC cooling technology are outlined.
Keywords:  electrocaloric effect      refrigeration      electrocaloric cooling devices      electrocaloric materials  
Received:  28 September 2025      Revised:  10 November 2025      Accepted manuscript online:  14 November 2025
PACS:  77.70.+a (Pyroelectric and electrocaloric effects)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
  07.20.-n (Thermal instruments and apparatus)  
Fund: This work was supported by the National Key R&D Program of China (Grant Nos. 2020YFA0711500 and 2020YFA0711503), the National Natural Science Foundation of China (Grant Nos. T2488302, T2342010, and 52076127), the Natural Science Foundation of Shanghai (Grant Nos. 20ZR1471700, 22JC1401800, and 24Z511405472), the State Key Laboratory of Mechanical System and Vibration (Grant Nos. MSVZD202211, MSVZD202301, and MSVZD202401), Shanghai Jiao Tong University 2030 Initiative, Shanghai Jiao Tong University SiYuan Scholar Program, and the Student Innovation Center and the Instrumental Analysis Center at Shanghai Jiao Tong University. We acknowledge the support by Shanghai Jiao Tong University 2030 Initiative.
Corresponding Authors:  Xiaoshi Qian, Tiannan Yang     E-mail:  xsqian@sjtu.edu.cn;yangt@sjtu.edu.cn

Cite this article: 

Feiyu Zhang(张费宇), Tiannan Yang(杨天南), and Xiaoshi Qian(钱小石) Electrocaloric refrigeration: From physical fundamentals to practical devices 2026 Chin. Phys. B 35 027701

[1] Russ B, Glaudell A, Urban J J, Chabinyc M L and Segalman R A 2016 Nature Reviews Materials 1 16050
[2] Franco V, Blázquez J S, Ipus J J, Law J Y, Moreno-Ramírez L M and Conde A 2018 Progress in Materials Science 93 112
[3] Xu S S, Fu Q, Zhou Y F, Peng L, Gao X Q, Li Z X, Gong M Q, Dong X Q and Shen J 2023 Chin. Phys. B 32 027502
[4] Xu C, Jiang X, Zou Z, Xie Z, Zhang W and Feng M 2024 Chin. Phys. B 33 127501
[5] Tušek J, Engelbrecht K, Eriksen D, Dall’Olio S, Tušek J and Pryds N 2016 Nature Energy 1 16134
[6] Li B, Kawakita Y, Ohira-Kawamura S, et al. 2019 Nature 567 506
[7] Mischenko A S, Zhang Q, Scott J F, Whatmore R W and Mathur N D 2006 Science 311 1270
[8] Neese B, Chu B, Lu S G, Wang Y, Furman E and Zhang Q M 2008 Science 321 821
[9] Moya X, Kar-Narayan S and Mathur N D 2014 Nat. Mater. 13 439
[10] Shi J, Han D, Li Z, Yang L, Lu S G, Zhong Z, Chen J, Zhang Q M and Qian X 2019 Joule 3 1200
[11] Kobeko P and Kurtschatov J 1930 Zeitschrift für Physik 66 192
[12] Qian X, Chen X, Zhu L and Zhang Q M 2023 Science 380 eadg0902
[13] Chen X, Shvartsman V V, Lupascu D C and Zhang Q M 2022 J. Appl. Phys. 132 240901
[14] Pirc R, Kutnjak Z, Blinc R and Zhang Q M 2011 Appl. Phys. Lett. 98 021909
[15] Qian X, Han D, Zheng L, Chen J, Tyagi M, Li Q, Du F, Zheng S, Huang X, Zhang S, Shi J, Huang H, Shi X, Chen J, Qin H, Bernholc J, Chen X, Chen L Q, Hong L and Zhang Q M 2021 Nature 600 664
[16] Rozič B, Kosec M, Uršič H, Holc J, Malič B, Zhang Q M, Blinc R, Pirc R and Kutnjak Z 2011 J. Appl. Phys. 110 064118
[17] Li X, Lu S G, Chen X Z, Gu H, Qian X S and Zhang Q M 2013 J. Mater. Chem. C 1 23
[18] Thacher P D 1968 J. Appl. Phys. 39 1996
[19] Lu S G, Rozič B, Zhang Q M, Kutnjak Z, Pirc R, Lin M, Li X and Gorny L 2010 Appl. Phys. Lett. 97 202901
[20] Usui T, Hirose S, Ando A, Crossley S, Nair B, Moya X and Mathur N D 2017 J. Phys. D: Appl. Phys. 50 424002
[21] Lu S G, Rozič B, Zhang Q M, Kutnjak Z, Li X, Furman E, Gorny L J, Lin M, Malič B, Kosec M, Blinc R and Pirc R 2010 Appl. Phys. Lett. 97 162904
[22] Nair B, Usui T, Crossley S, Kurdi S, Guzmán-Verri G G, Moya X, Hirose S and Mathur N D 2019 Nature 575 468
[23] Shan D, Pan K, Liu Y and Li J 2020 Nano Energy 67 104203
[24] Bai Y, Zheng G and Shi S 2010 Appl. Phys. Lett. 96 192902
[25] Ye H J, Qian X S, Jeong D Y, Zhang S, Zhou Y, ShaoWZ, Zhen L and Zhang Q M 2014 Appl. Phys. Lett. 105 152908
[26] Sanlialp M, Shvartsman V V, Acosta M, Dkhil B and Lupascu D C 2015 Appl. Phys. Lett. 106 062901
[27] Hou Y, Yang L, Qian X, Zhang T and Zhang QM2016 Phil. Tran. Roy. Soc. A: Math. Phys. Eng. Sci. 374 20160055
[28] Qian X S, Ye H J, Zhang Y T, Gu H, Li X, Randall C A and Zhang Q M 2014 Advanced Functional Materials 24 1300
[29] Li X, Qian X S, Lu S G, Cheng J, Fang Z and Zhang Q M 2011 Appl. Phys. Lett. 99 052907
[30] Li X, Qian X S, Gu H, Chen X, Lu S G, Lin M, Bateman F and Zhang Q M 2012 Appl. Phys. Lett. 101 132903
[31] Qian J, Hu P, Liu C, Jiang J, Dan Z, Ma J, Lin Y, Nan C W and Shen Y 2018 Science Bulletin 63 356
[32] Liu Y, Scott J F and Dkhil B 2016 Appl. Phys. Rev. 3 031102
[33] Yang T, Wang B, Hu J M and Chen L Q 2020 Phys. Rev. Lett. 124 107601
[34] Chen L Q 2008 Journal of the American Ceramic Society 91 1835
[35] Bai Y, Zheng G P and Shi S Q 2011 Materials Research Bulletin 46 1866
[36] Geng W, Liu Y, Meng X, Bellaiche L, Scott J F, Dkhil B and Jiang A 2015 Adv. Mater. 27 3165
[37] Ma Y B, Grünebohm A, Meyer K C, Albe K and Xu B X 2016 Phys. Rev. B 94 094113
[38] Weyland F, Bradeško A, Ma Y B, Koruza J, Xu B X, Albe K, Rojac T and Novak N 2018 Energy Technology 6 1519
[39] Zhang T, Li W, Hou Y, Yu Y, Cao W, Feng Y and Fei W 2016 RSC Advances 6 71934
[40] Wu H H, Zhu J and Zhang T Y 2015 Nano Energy 16 419
[41] Park M H, Kim H J, Kim Y J, Moon T, Kim K D, Lee Y H, Hyun S D and Hwang C S 2016 Adv. Mater. 28 7956
[42] Zhuo F, Li Q, Gao J, Wang Y, Yan Q, Zhang Y, Xi X, Chu X and Cao W 2016 Appl. Phys. Lett. 108 082904
[43] Hao X, Zhai J, Kong L B and Xu Z 2014 Progress in Materials Science 63 1
[44] Grünebohm A, Ma Y B, Marathe M, Xu B X, Albe K, Kalcher C, Meyer K C, Shvartsman V V, Lupascu D C and Ederer C 2018 Energy Technology 6 1491
[45] Qian X, Yang T, Zhang T, Chen L Q and Zhang Q M 2016 Appl. Phys. Lett. 108 142902
[46] Valasek J 1921 Phys. Rev. 17 475
[47] Wiseman G G and Kuebler J K 1963 Phys. Rev. 131 2023
[48] Sinyavsky Y V and and Brodyansky V M 1992 Ferroelectrics 131 321
[49] Crossley S, McGinnigle J R, Kar-Narayan S and Mathur N D 2014 Appl. Phys. Lett. 104 082909
[50] Liu Z K, Li X and Zhang Q M 2012 Appl. Phys. Lett. 101 082904
[51] Zhao L, Ke X, Zhou Z, Liao X, Li J, Wang Y, Wu M, Li T, Bai Y and Ren X 2019 J. Mater. Chem. C 7 1353
[52] Zhao C, Yang J, Huang Y, Hao X and Wu J 2019 J. Mater. Chem. A 7 25526
[53] Zhuo F, Li Q, Gao J, Ji Y, Yan Q, Zhang Y, Wu H H, Xi X Q, Chu X and Cao W 2018 ACS Applied Materials & Interfaces 10 11747
[54] Bai Y, Ding K, Zheng G P, Shi S Q and Qiao L 2012 Physica Status Solidi (a) 209 941
[55] Bai Y, Zheng G P, Ding K, Qiao L, Shi S Q and Guo D 2011 J. Appl. Phys. 110 094103
[56] Kar-Narayan S and Mathur N D 2010 J. Phys. D: Appl. Phys. 43 032002
[57] Crossley S, Usui T, Nair B, Kar-Narayan S, Moya X, Hirose S, Ando A and Mathur N D 2016 Appl. Phys. Lett. 108 032902
[58] Saranya D, Chaudhuri A R, Parui J and Krupanidhi S B 2009 Bulletin of Materials Science 32 259
[59] Correia T M, Young J S, Whatmore R W, Scott J F, Mathur N D and Zhang Q 2009 Appl. Phys. Lett. 95 182904
[60] Si M, Saha A K, Liao P Y, Gao S, Neumayer S M, Jian J, Qin J, Balke Wisinger N, Wang H, Maksymovych P, Wu W, Gupta S K and Ye P D 2019 ACS Nano 13 8760
[61] Lu S G, Lin X, Li J, Li D, Yao Y, Tao T and Liang B 2021 J. Alloys Compd. 871 159519
[62] Du F, Yang T, Hao H, et al. 2025 Nature 640 924
[63] Lu S G, Rozič B, Zhang Q M, Kutnjak Z and Neese B 2011 Appl. Phys. Lett. 98 122906
[64] Lu B, Chen X, Zhang T, Lu S G and Zhang Q M 2018 Appl. Phys. Lett. 113 153903
[65] Chen X, Xu W, Lu B, Zhang T, Wang Q and Zhang Q M 2018 Appl. Phys. Lett. 113 113902
[66] Qian X, Ye H J, Yang T, Shao W Z, Zhen L, Furman E, Chen L Q and Zhang Q 2015 Advanced Functional Materials 25 5134
[67] Chen X Z, Li X, Qian X S, Wu S, Lu S G, Gu H M, Lin M, Shen Q D and Zhang Q M 2013 Polymer 54 2373
[68] Li Q, Zhang G, Zhang X, Jiang S, Zeng Y and Wang Q 2015 Adv. Mater. 27 2236
[69] Zhang G, Zhang X, Yang T, Li Q, Chen L Q, Jiang S andWang Q 2015 ACS Nano 9 7164
[70] Zhang G, Fan B, Zhao P, Hu Z, Liu Y, Liu F, Jiang S, Zhang S, Li H and Wang Q 2018 ACS Applied Energy Materials 1 1344
[71] Zheng S, Du F, Zheng L, Han D, Li Q, Shi J, Chen J, Shi X, Huang H, Luo Y, Yang Y, O’Reilly P, Wei L, de Souza N, Hong L and Qian X 2023 Science 382 1020
[72] Qian X S, Lu S G, Li X, Gu H, Chien L C and Zhang Q 2013 Advanced Functional Materials 23 2894
[73] Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar- Narayan S, Planes A, Mañosa L and Mathur N D 2013 Adv. Mater. 25 1360
[74] Shebanovs L, Borman K, Lawless W N and and Kalvane A 2002 Ferroelectrics 273 137
[75] Qian J, Peng R, Shen Z, Jiang J, Xue F, Yang T, Chen L and Shen Y 2019 Adv. Mater. 31 1801949
[76] Han D, Du F, Zhang Y, Zheng L, Chen J, Huang X, Li Q, Zheng S, Shi J, Chen J, Dong J and Qian X 2023 Joule 7 2174
[77] Yang Y, Zhou Z, Ke X, Wang Y, Su X, Li J, Bai Y and Ren X 2020 Scripta Materialia 174 44
[78] Sun X, Huang H,Wang J,Wen Y and Dang ZM2019 J. Alloys Compd. 777 821
[79] Hou X, Wu H, Li H, Chen H and Wang J 2018 J. Phys.: Condens. Matter 30 465401
[80] Hou X, Li H, Shimada T, Kitamura T and Wang J 2018 J. Appl. Phys. 123 124103
[81] Li W, Jafri H M, Zhang C, Zhang Y, Zhang H, Huang H, Jiang S and Zhang G 2020 J. Mater. Chem. A 8 16189
[82] Huang J, Kwok M H, Zhao B and Zhu L 2024 Giant 18 100257
[83] Qian S, Nasuta D, Rhoads A,Wang Y, Geng Y, Hwang Y, Radermacher R and Takeuchi I 2016 International Journal of Refrigeration 62 177
[84] Hou H, Qian S and Takeuchi I 2022 Nature Reviews Materials 7 633
[85] Jia Y and Sungtaek Ju Y 2012 Appl. Phys. Lett. 100 242901
[86] Gu H, Qian X, Li X, Craven B, Zhu W, Cheng A, Yao S C and Zhang Q M 2013 Appl. Phys. Lett. 102 122904
[87] Torelló A, Lheritier P, Usui T, Nouchokgwe Y, Gérard M, Bouton O, Hirose S and Defay E 2020 Science 370 125
[88] Wang Y, Zhang Z, Usui T, Benedict M, Hirose S, Lee J, Kalb J and Schwartz D 2020 Science 370 129
[89] Li J, Torelló A, Kovacova V, Prah U, Aravindhan A, Granzow T, Usui T, Hirose S and Defay E 2023 Science 382 801
[90] Zhang T, Qian X S, Gu H, Hou Y and Zhang Q M 2017 Appl. Phys. Lett. 110 243503
[91] Ju Y S 2010 Journal of Electronic Packaging 132 041004
[92] Plaznik U, Kitanovski A, Rozič B, Malič B, Uršič H, Drnovšek S, Cilenšek J, Vrabelj M, Poredoš A and Kutnjak Z 2015 Appl. Phys. Lett. 106 043903
[93] Gu H M, Qian X S, Ye H J and Zhang Q M 2014 Appl. Phys. Lett. 105 162905
[94] Li Q, Wei L, Zhong N, Shi X, Han D, Zheng S, Du F, Shi J, Chen J, Huang H, Duan C and Qian X 2024 Nat. Commun. 15 702
[95] Epstein R I and Malloy K J 2009 J. Appl. Phys. 106 064509
[96] Bradeško A, Juričić -D, Santo Zarnik M, Malič B, Kutnjak Z and Rojac T 2016 Appl. Phys. Lett. 109 143508
[97] Ma R, Zhang Z, Tong K, Huber D, Kornbluh R, Ju Y S and Pei Q 2017 Science 357 1130
[98] Meng Y, Zhang Z,Wu H,Wu R,Wu J,Wang H and Pei Q 2020 Nature Energy 5 996
[99] Han D, Zhang Y, Huang C, Zheng S, Wu D, Li Q, Du F, Duan H, Chen W, Shi J, Chen J, Liu G, Chen X and Qian X 2024 Nature 629 1041
[100] Wu H, Zhu Y, Yan W, Zhang S, Budiman W, Liu K, Wu J, Meng Y, Zhao X, Mehta A, Kaur S and Pei Q 2024 Science 386 546
[101] Xu H and Huang J 2025 Chin. Phys. B 34 67702
[1] Magnetic refrigerants for ultralow temperatures: A mini-review
Ziyu W. Yang(杨子煜), Shuai Tang(唐帅), Guangkai Zhang(张广凯), Ciyu Qin(秦慈宇), Maocai Pi(皮茂材), Xubin Ye(叶旭斌), Zhao Pan(潘昭), Yu-Jia Zeng(曾昱嘉), and Youwen Long(龙有文). Chin. Phys. B, 2026, 35(2): 020701.
[2] Positive and negative electrocaloric effects
Hongrui Xu(徐洪瑞) and Jiping Huang(黄吉平). Chin. Phys. B, 2025, 34(6): 067702.
[3] Barocaloric effect in ferroelastic Pb3(VO4)2
Pengtao Cheng(程鹏涛), Zuhua Chen(陈祖华), Chengliang Zhang(张成亮), Zhengming Zhang(张正明), Bing Li(李昺), and Dunhui Wang(王敦辉). Chin. Phys. B, 2025, 34(3): 036801.
[4] Magnetic and magnetocaloric effect of Er20Ho20Dy20Cu20Ni20 high-entropy metallic glass
Shi-Lin Yu(于世霖), Lu Tian(田路), Jun-Feng Wang(王俊峰), Xin-Guo Zhao(赵新国), Da Li(李达), Zhao-Jun Mo(莫兆军), and Bing Li(李昺). Chin. Phys. B, 2024, 33(5): 057502.
[5] Tuning the magnetocaloric and structural properties of La0.67Sr0.28Pr0.05Mn1-xCoxO3 refrigeration materials
Changji Xu(徐长吉), Xinyu Jiang(姜心雨), Zhengguang Zou(邹正光), Zhuojia Xie(谢卓家), Weijian Zhang(张伟建), and Min Feng(冯敏). Chin. Phys. B, 2024, 33(12): 127501.
[6] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[7] Structure, magnetism and magnetocaloric effects in Er5Si3Bx (x=0.3, 0.6) compounds
Zhihong Hao(郝志红), Hui Liu(刘辉), and Juguo Zhang(张聚国). Chin. Phys. B, 2023, 32(11): 117501.
[8] Comprehensive performance of a ball-milled La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al magnetocaloric composite
Jiao-Hong Huang(黄焦宏), Ying-De Zhang(张英德), Nai-Kun Sun(孙乃坤), Yang Zhang(张扬), Xin-Guo Zhao(赵新国), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2022, 31(4): 047503.
[9] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[10] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[11] Electrocaloric effect enhanced thermal conduction of a multilayer ceramic structure
Hongbo Liu(刘宏波). Chin. Phys. B, 2020, 29(8): 087701.
[12] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[13] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
[14] Electrocaloric effect and pyroelectric properties of organic-inorganic hybrid (C2H5NH3)2CuCl4
Yi Liu(刘义), Yan-Fen Chang(畅艳芬), Young Sun(孙阳), Jun Shen(沈俊), Li-Qin Yan(闫丽琴), Zun-Ming Lu(卢遵铭). Chin. Phys. B, 2019, 28(11): 117701.
[15] Machine learning technique for prediction of magnetocaloric effect in La(Fe, Si/Al)13-based materials
Bo Zhang(张博), Xin-Qi Zheng(郑新奇), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 067503.
No Suggested Reading articles found!